The functor from topological spaces to light condensed sets #
We define the functor topCatToLightCondSet : TopCat.{u} ⥤ LightCondSet.{u}
.
@[simp]
theorem
TopCat.toLightCondSet_val_map
(X : TopCat)
:
∀ {X_1 Y : LightProfiniteᵒᵖ} (f : X_1 ⟶ Y) (g : C(↑(LightProfinite.toTopCat.obj (Opposite.unop X_1)), ↑X)),
X.toLightCondSet.val.map f g = g.comp f.unop
@[simp]
theorem
TopCat.toLightCondSet_val_obj
(X : TopCat)
(X : LightProfiniteᵒᵖ)
:
X✝.toLightCondSet.val.obj X = C(↑(Opposite.unop X).toCompHaus.toTop, ↑X✝)
Associate to a u
-small topological space the corresponding light condensed set, given by
yonedaPresheaf
.
Equations
- X.toLightCondSet = LightCondSet.ofSheafLightProfinite (ContinuousMap.yonedaPresheaf LightProfinite.toTopCat ↑X) ⋯
Instances For
@[simp]
theorem
topCatToLightCondSet_map_val_app :
∀ {X Y : TopCat} (f : X ⟶ Y) (x : LightProfiniteᵒᵖ) (g : ((fun (X : TopCat) => X.toLightCondSet) X).val.obj x),
(topCatToLightCondSet.map f).val.app x g = ContinuousMap.comp f g
@[simp]
TopCat.toLightCondSet
yields a functor from TopCat.{u}
to LightCondSet.{u}
.
Equations
- One or more equations did not get rendered due to their size.