Documentation

Mathlib.Condensed.TopComparison

The functor from topological spaces to condensed sets #

This file builds on the API from the file TopCat.Yoneda. If the forgetful functor to TopCat has nice properties, like preserving pullbacks and finite coproducts, then this Yoneda presheaf satisfies the sheaf condition for the regular and extensive topologies respectively.

We apply this API to CompHaus and define the functor topCatToCondensedSet : TopCat.{u+1} ⥤ CondensedSet.{u}.

An auxiliary lemma to that allows us to use QuotientMap.lift in the proof of equalizerCondition_yonedaPresheaf.

If G preserves the relevant pullbacks and every effective epi in C is a quotient map (which is the case when C is CompHaus or Profinite), then yonedaPresheaf satisfies the equalizer condition which is required to be a sheaf for the regular topology.

If G preserves finite coproducts (which is the case when C is CompHaus, Profinite or Stonean), then yonedaPresheaf preserves finite products, which is required to be a sheaf for the extensive topology.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem TopCat.toCondensedSet_val_obj (X : TopCat) (X : CompHausᵒᵖ) :
X✝.toCondensedSet.val.obj X = C((Opposite.unop X).toTop, X✝)
@[simp]
theorem TopCat.toCondensedSet_val_map (X : TopCat) :
∀ {X_1 Y : CompHausᵒᵖ} (f : X_1 Y) (g : C((compHausToTop.obj (Opposite.unop X_1)), X)), X.toCondensedSet.val.map f g = g.comp f.unop
noncomputable def TopCat.toCondensedSet (X : TopCat) :

Associate to a (u+1)-small topological space the corresponding condensed set, given by yonedaPresheaf.

Equations
Instances For
    @[simp]
    theorem topCatToCondensedSet_obj (X : TopCat) :
    topCatToCondensedSet.obj X = X.toCondensedSet
    @[simp]
    theorem topCatToCondensedSet_map_val_app :
    ∀ {X Y : TopCat} (f : X Y) (x : CompHausᵒᵖ) (g : ((fun (X : TopCat) => X.toCondensedSet) X).val.obj x), (topCatToCondensedSet.map f).val.app x g = ContinuousMap.comp f g

    TopCat.toCondensedSet yields a functor from TopCat.{u+1} to CondensedSet.{u}.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For