Documentation

AdeleRingLocallyCompact.RingTheory.DedekindDomain.FiniteAdeleRing

Finite adele ring #

Let R be a Dedekind domain of Krull dimension 1, K its field of fractions. The finite adele ring of K is defined in Mathlib.RingTheory.DedekindDomain.finiteAdeleRing https://github.com/leanprover-community/mathlib4/blob/1c0ac885c9b8aa4daa1830acb56b755140a8059f/Mathlib/RingTheory/DedekindDomain/FiniteAdeleRing.lean#L274-L280. In this file we supplement the theory by defining some local maps and the topological space for the finite adele ring.

Main definitions #

Main results #

References #

Tags #

finite adele ring, dedekind domain

Sends a local element to the product of all adicCompletions filled with 1s elsewhere.

Equations
Instances For

    Sends a local element to a finite adele filled with 1s elsewhere.

    Equations
    Instances For

      The generating set of the finite adele ring are all sets of the form Πᵥ Vᵥ, where each Vᵥ is open in Kᵥ and for all but finitely many v we have that Vᵥ is the v-adic ring of integers.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem DedekindDomain.FiniteAdeleRing.comap_of_generateFrom_nhd₂ {R : Type u_1} [CommRing R] [IsDomain R] [IsDedekindDomain R] {K : Type u_2} [Field K] [Algebra R K] [IsFractionRing R K] {x : (DedekindDomain.finiteAdeleRing R K)} {y : (DedekindDomain.finiteAdeleRing R K)} {U : Set (DedekindDomain.finiteAdeleRing R K)} (f : (DedekindDomain.finiteAdeleRing R K) × (DedekindDomain.finiteAdeleRing R K)(DedekindDomain.finiteAdeleRing R K)) (hf : ∃ (g : (v : IsDedekindDomain.HeightOneSpectrum R) → IsDedekindDomain.HeightOneSpectrum.adicCompletion K v × IsDedekindDomain.HeightOneSpectrum.adicCompletion K vIsDedekindDomain.HeightOneSpectrum.adicCompletion K v), ∀ (v : IsDedekindDomain.HeightOneSpectrum R), g v (RingHom.prodMap (DedekindDomain.FiniteAdeleRing.projection K v) (DedekindDomain.FiniteAdeleRing.projection K v)) = (DedekindDomain.FiniteAdeleRing.projection K v) f Continuous (g v) ∀ (x y : IsDedekindDomain.HeightOneSpectrum.adicCompletion K v), x IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers K vy IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers K vg v (x, y) IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers K v) (hU : U DedekindDomain.FiniteAdeleRing.generatingSet R K) (hxy : (x, y) f ⁻¹' U) :

        Consider two finite adeles x, y, a generating open set U of the finite adele ring and a functionf : finiteAdeleRing R K × finiteAdeleRing R K → finiteAdeleRing K such that (x, y) is in the preimage of U under f. If f factors through a collection of continuous maps g v defined at each place, which each preserve the respective ring of integers, then we can obtain two open sets X and Y of the finite adele ring, which contain x and y respectively, such that their product X ×ˢ Y is contained in the preimage of U under f.

        Abstracted version of https://github.com/mariainesdff/ideles/blob/e6646cd462c86a8813ca04fb82e84cdc14a59ad4/src/adeles_R.lean#L469

        Addition on the finite adele ring is continuous.

        Multiplication on the finite adele ring is continuous.

        The topological ring structure on the finite adele ring.

        Equations
        • =

        The global embedding sending an element x ∈ K to (x)ᵥ in the finite adele ring.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For