Adele Ring #
We define the adele ring of a number field K
as the direct product of the infinite adele ring
of K
and the finite adele ring of K
. We show that the adele ring of K
is a
locally compact space.
Main definitions #
NumberField.AdeleRing K
is the adele ring of a number fieldK
.NumberField.AdeleRing.principalSubgroup K
is the subgroup of principal adeles(x)ᵥ
.
Main results #
AdeleRing.locallyCompactSpace
: the adele ring of a number field is a locally compact space.
References #
- [J.W.S. Cassels, A. Frölich, Algebraic Number Theory][cassels1967algebraic]
- [M.I. de Frutos-Fernàndez, Formalizing the Ring of Adèles of a Global Field][defrutosfernandez2022]
Tags #
adele ring, dedekind domain
The adele ring of a number field.
Equations
Instances For
Equations
- NumberField.AdeleRing.instCommRing K = Prod.instCommRing
Equations
- NumberField.AdeleRing.instInhabited K = { default := 0 }
Equations
- NumberField.AdeleRing.instTopologicalSpace K = instTopologicalSpaceProd
Equations
- ⋯ = ⋯
instance
NumberField.AdeleRing.instAlgebra
(K : Type u_1)
[Field K]
[NumberField K]
:
Algebra K (NumberField.AdeleRing K)
@[simp]
theorem
NumberField.AdeleRing.algebraMap_fst_apply
(K : Type u_1)
[Field K]
[NumberField K]
{v : NumberField.InfinitePlace K}
(x : K)
:
((algebraMap K (NumberField.AdeleRing K)) x).1 v = ↑(WithAbs ↑v) x
@[simp]
theorem
NumberField.AdeleRing.algebraMap_snd_apply
(K : Type u_1)
[Field K]
[NumberField K]
{v : IsDedekindDomain.HeightOneSpectrum (NumberField.RingOfIntegers K)}
(x : K)
:
(fun (v : IsDedekindDomain.HeightOneSpectrum (NumberField.RingOfIntegers K)) =>
↑((algebraMap K (NumberField.AdeleRing K)) x).2 v)
v = ↑K x
The adele ring of a number field is a locally compact space.
Equations
- ⋯ = ⋯
The subgroup of principal adeles (x)ᵥ
where x ∈ K
.
Equations
- NumberField.AdeleRing.principalSubgroup K = (algebraMap K (NumberField.AdeleRing K)).range.toAddSubgroup