Operations on sheaves #
Main definition #
SubmonoidPresheaf
: A subpresheaf with a submonoid structure on each of the components.LocalizationPresheaf
: The localization of a presheaf of commrings at aSubmonoidPresheaf
.TotalQuotientPresheaf
: The presheaf of total quotient rings.
structure
TopCat.Presheaf.SubmonoidPresheaf
{X : TopCat}
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.ConcreteCategory C]
[(X : C) → MulOneClass ((CategoryTheory.forget C).obj X)]
[∀ (X Y : C), MonoidHomClass (X ⟶ Y) ((CategoryTheory.forget C).obj X) ((CategoryTheory.forget C).obj Y)]
(F : TopCat.Presheaf C X)
:
Type (max u_1 w)
A subpresheaf with a submonoid structure on each of the components.
- obj : (U : (TopologicalSpace.Opens ↑X)ᵒᵖ) → Submonoid ((CategoryTheory.forget C).obj (F.obj U))
- map : ∀ {U V : (TopologicalSpace.Opens ↑X)ᵒᵖ} (i : U ⟶ V), self.obj U ≤ Submonoid.comap (F.map i) (self.obj V)
Instances For
theorem
TopCat.Presheaf.SubmonoidPresheaf.map
{X : TopCat}
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.ConcreteCategory C]
[(X : C) → MulOneClass ((CategoryTheory.forget C).obj X)]
[∀ (X Y : C), MonoidHomClass (X ⟶ Y) ((CategoryTheory.forget C).obj X) ((CategoryTheory.forget C).obj Y)]
{F : TopCat.Presheaf C X}
(self : F.SubmonoidPresheaf)
{U : (TopologicalSpace.Opens ↑X)ᵒᵖ}
{V : (TopologicalSpace.Opens ↑X)ᵒᵖ}
(i : U ⟶ V)
:
self.obj U ≤ Submonoid.comap (F.map i) (self.obj V)
noncomputable def
TopCat.Presheaf.SubmonoidPresheaf.localizationPresheaf
{X : TopCat}
{F : TopCat.Presheaf CommRingCat X}
(G : F.SubmonoidPresheaf)
:
The localization of a presheaf of CommRing
s with respect to a SubmonoidPresheaf
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
TopCat.Presheaf.instAlgebraObjCommRingCatForgetOppositeOpensαTopologicalSpaceCommRingLocalizationPresheaf
{X : TopCat}
{F : TopCat.Presheaf CommRingCat X}
(G : F.SubmonoidPresheaf)
(U : (TopologicalSpace.Opens ↑X)ᵒᵖ)
:
Algebra ((CategoryTheory.forget CommRingCat).obj (F.obj U)) ↑(G.localizationPresheaf.obj U)
Equations
- TopCat.Presheaf.instAlgebraObjCommRingCatForgetOppositeOpensαTopologicalSpaceCommRingLocalizationPresheaf G U = let_fun this := inferInstance; this
instance
TopCat.Presheaf.instIsLocalizationObjCommRingCatForgetOppositeOpensαTopologicalSpaceObjCommRingLocalizationPresheaf
{X : TopCat}
{F : TopCat.Presheaf CommRingCat X}
(G : F.SubmonoidPresheaf)
(U : (TopologicalSpace.Opens ↑X)ᵒᵖ)
:
IsLocalization (G.obj U) ↑(G.localizationPresheaf.obj U)
Equations
- ⋯ = ⋯
@[simp]
theorem
TopCat.Presheaf.SubmonoidPresheaf.toLocalizationPresheaf_app
{X : TopCat}
{F : TopCat.Presheaf CommRingCat X}
(G : F.SubmonoidPresheaf)
(U : (TopologicalSpace.Opens ↑X)ᵒᵖ)
:
G.toLocalizationPresheaf.app U = CommRingCat.ofHom (algebraMap (↑(F.obj U)) (Localization (G.obj U)))
def
TopCat.Presheaf.SubmonoidPresheaf.toLocalizationPresheaf
{X : TopCat}
{F : TopCat.Presheaf CommRingCat X}
(G : F.SubmonoidPresheaf)
:
F ⟶ G.localizationPresheaf
The map into the localization presheaf.
Equations
- G.toLocalizationPresheaf = { app := fun (U : (TopologicalSpace.Opens ↑X)ᵒᵖ) => CommRingCat.ofHom (algebraMap (↑(F.obj U)) (Localization (G.obj U))), naturality := ⋯ }
Instances For
instance
TopCat.Presheaf.epi_toLocalizationPresheaf
{X : TopCat}
{F : TopCat.Presheaf CommRingCat X}
(G : F.SubmonoidPresheaf)
:
CategoryTheory.Epi G.toLocalizationPresheaf
Equations
- ⋯ = ⋯
@[simp]
theorem
TopCat.Presheaf.submonoidPresheafOfStalk_obj
{X : TopCat}
(F : TopCat.Presheaf CommRingCat X)
(S : (x : ↑X) → Submonoid ↑(F.stalk x))
(U : (TopologicalSpace.Opens ↑X)ᵒᵖ)
:
(F.submonoidPresheafOfStalk S).obj U = ⨅ (x : ↥(Opposite.unop U)), Submonoid.comap (F.germ x) (S ↑x)
noncomputable def
TopCat.Presheaf.submonoidPresheafOfStalk
{X : TopCat}
(F : TopCat.Presheaf CommRingCat X)
(S : (x : ↑X) → Submonoid ↑(F.stalk x))
:
F.SubmonoidPresheaf
Given a submonoid at each of the stalks, we may define a submonoid presheaf consisting of sections whose restriction onto each stalk falls in the given submonoid.
Equations
- F.submonoidPresheafOfStalk S = { obj := fun (U : (TopologicalSpace.Opens ↑X)ᵒᵖ) => ⨅ (x : ↥(Opposite.unop U)), Submonoid.comap (F.germ x) (S ↑x), map := ⋯ }
Instances For
noncomputable instance
TopCat.Presheaf.instInhabitedSubmonoidPresheafCommRingCat
{X : TopCat}
(F : TopCat.Presheaf CommRingCat X)
:
Inhabited F.SubmonoidPresheaf
noncomputable def
TopCat.Presheaf.totalQuotientPresheaf
{X : TopCat}
(F : TopCat.Presheaf CommRingCat X)
:
The localization of a presheaf of CommRing
s at locally non-zero-divisor sections.
Equations
- F.totalQuotientPresheaf = (F.submonoidPresheafOfStalk fun (x : ↑X) => nonZeroDivisors ↑(F.stalk x)).localizationPresheaf
Instances For
noncomputable def
TopCat.Presheaf.toTotalQuotientPresheaf
{X : TopCat}
(F : TopCat.Presheaf CommRingCat X)
:
F ⟶ F.totalQuotientPresheaf
The map into the presheaf of total quotient rings
Equations
- F.toTotalQuotientPresheaf = (F.submonoidPresheafOfStalk fun (x : ↑X) => nonZeroDivisors ↑(F.stalk x)).toLocalizationPresheaf
Instances For
instance
TopCat.Presheaf.instEpiCommRingCatToTotalQuotientPresheaf
{X : TopCat}
(F : TopCat.Presheaf CommRingCat X)
:
CategoryTheory.Epi F.toTotalQuotientPresheaf
Equations
- ⋯ = ⋯
instance
TopCat.Presheaf.instMonoCommRingCatToTotalQuotientPresheafPresheaf
{X : TopCat}
(F : TopCat.Sheaf CommRingCat X)
:
CategoryTheory.Mono F.presheaf.toTotalQuotientPresheaf
Equations
- ⋯ = ⋯