Sequencial compacts in metric spaces #
In this file we prove 2 versions of Bolzano-Weierstrass theorem for proper metric spaces.
@[deprecated SeqCompact.lebesgue_number_lemma_of_metric]
theorem
SeqCompact.lebesgue_number_lemma_of_metric
{X : Type u_1}
[PseudoMetricSpace X]
{ι : Sort u_2}
{c : ι → Set X}
{s : Set X}
(hs : IsSeqCompact s)
(hc₁ : ∀ (i : ι), IsOpen (c i))
(hc₂ : s ⊆ ⋃ (i : ι), c i)
:
∃ δ > 0, ∀ a ∈ s, ∃ (i : ι), Metric.ball a δ ⊆ c i
theorem
tendsto_subseq_of_frequently_bounded
{X : Type u_1}
[PseudoMetricSpace X]
[ProperSpace X]
{s : Set X}
(hs : Bornology.IsBounded s)
{x : ℕ → X}
(hx : ∃ᶠ (n : ℕ) in Filter.atTop, x n ∈ s)
:
∃ a ∈ closure s, ∃ (φ : ℕ → ℕ), StrictMono φ ∧ Filter.Tendsto (x ∘ φ) Filter.atTop (nhds a)
A version of Bolzano-Weierstrass: in a proper metric space (eg. $ℝ^n$), every bounded sequence has a converging subsequence. This version assumes only that the sequence is frequently in some bounded set.
theorem
tendsto_subseq_of_bounded
{X : Type u_1}
[PseudoMetricSpace X]
[ProperSpace X]
{s : Set X}
(hs : Bornology.IsBounded s)
{x : ℕ → X}
(hx : ∀ (n : ℕ), x n ∈ s)
:
∃ a ∈ closure s, ∃ (φ : ℕ → ℕ), StrictMono φ ∧ Filter.Tendsto (x ∘ φ) Filter.atTop (nhds a)
A version of Bolzano-Weierstrass: in a proper metric space (eg. $ℝ^n$), every bounded sequence has a converging subsequence.