Metric separated pairs of sets #
In this file we define the predicate IsMetricSeparated
. We say that two sets in an (extended)
metric space are metric separated if the (extended) distance between x ∈ s
and y ∈ t
is
bounded from below by a positive constant.
This notion is useful, e.g., to define metric outer measures.
Two sets in an (extended) metric space are called metric separated if the (extended) distance
between x ∈ s
and y ∈ t
is bounded from below by a positive constant.
Instances For
theorem
IsMetricSeparated.symm
{X : Type u_1}
[EMetricSpace X]
{s : Set X}
{t : Set X}
(h : IsMetricSeparated s t)
:
theorem
IsMetricSeparated.comm
{X : Type u_1}
[EMetricSpace X]
{s : Set X}
{t : Set X}
:
IsMetricSeparated s t ↔ IsMetricSeparated t s
@[simp]
@[simp]
theorem
IsMetricSeparated.disjoint
{X : Type u_1}
[EMetricSpace X]
{s : Set X}
{t : Set X}
(h : IsMetricSeparated s t)
:
Disjoint s t
theorem
IsMetricSeparated.subset_compl_right
{X : Type u_1}
[EMetricSpace X]
{s : Set X}
{t : Set X}
(h : IsMetricSeparated s t)
:
theorem
IsMetricSeparated.mono
{X : Type u_1}
[EMetricSpace X]
{s : Set X}
{t : Set X}
{s' : Set X}
{t' : Set X}
(hs : s ⊆ s')
(ht : t ⊆ t')
:
IsMetricSeparated s' t' → IsMetricSeparated s t
theorem
IsMetricSeparated.mono_left
{X : Type u_1}
[EMetricSpace X]
{s : Set X}
{t : Set X}
{s' : Set X}
(h' : IsMetricSeparated s' t)
(hs : s ⊆ s')
:
theorem
IsMetricSeparated.mono_right
{X : Type u_1}
[EMetricSpace X]
{s : Set X}
{t : Set X}
{t' : Set X}
(h' : IsMetricSeparated s t')
(ht : t ⊆ t')
:
theorem
IsMetricSeparated.union_left
{X : Type u_1}
[EMetricSpace X]
{s : Set X}
{t : Set X}
{s' : Set X}
(h : IsMetricSeparated s t)
(h' : IsMetricSeparated s' t)
:
IsMetricSeparated (s ∪ s') t
@[simp]
theorem
IsMetricSeparated.union_left_iff
{X : Type u_1}
[EMetricSpace X]
{s : Set X}
{t : Set X}
{s' : Set X}
:
IsMetricSeparated (s ∪ s') t ↔ IsMetricSeparated s t ∧ IsMetricSeparated s' t
theorem
IsMetricSeparated.union_right
{X : Type u_1}
[EMetricSpace X]
{s : Set X}
{t : Set X}
{t' : Set X}
(h : IsMetricSeparated s t)
(h' : IsMetricSeparated s t')
:
IsMetricSeparated s (t ∪ t')
@[simp]
theorem
IsMetricSeparated.union_right_iff
{X : Type u_1}
[EMetricSpace X]
{s : Set X}
{t : Set X}
{t' : Set X}
:
IsMetricSeparated s (t ∪ t') ↔ IsMetricSeparated s t ∧ IsMetricSeparated s t'
theorem
IsMetricSeparated.finite_iUnion_left_iff
{X : Type u_1}
[EMetricSpace X]
{ι : Type u_2}
{I : Set ι}
(hI : I.Finite)
{s : ι → Set X}
{t : Set X}
:
IsMetricSeparated (⋃ i ∈ I, s i) t ↔ ∀ i ∈ I, IsMetricSeparated (s i) t
theorem
IsMetricSeparated.finite_iUnion_left
{X : Type u_1}
[EMetricSpace X]
{ι : Type u_2}
{I : Set ι}
(hI : I.Finite)
{s : ι → Set X}
{t : Set X}
:
(∀ i ∈ I, IsMetricSeparated (s i) t) → IsMetricSeparated (⋃ i ∈ I, s i) t
Alias of the reverse direction of IsMetricSeparated.finite_iUnion_left_iff
.
theorem
IsMetricSeparated.finite_iUnion_right_iff
{X : Type u_1}
[EMetricSpace X]
{ι : Type u_2}
{I : Set ι}
(hI : I.Finite)
{s : Set X}
{t : ι → Set X}
:
IsMetricSeparated s (⋃ i ∈ I, t i) ↔ ∀ i ∈ I, IsMetricSeparated s (t i)
@[simp]
theorem
IsMetricSeparated.finset_iUnion_left_iff
{X : Type u_1}
[EMetricSpace X]
{ι : Type u_2}
{I : Finset ι}
{s : ι → Set X}
{t : Set X}
:
IsMetricSeparated (⋃ i ∈ I, s i) t ↔ ∀ i ∈ I, IsMetricSeparated (s i) t
theorem
IsMetricSeparated.finset_iUnion_left
{X : Type u_1}
[EMetricSpace X]
{ι : Type u_2}
{I : Finset ι}
{s : ι → Set X}
{t : Set X}
:
(∀ i ∈ I, IsMetricSeparated (s i) t) → IsMetricSeparated (⋃ i ∈ I, s i) t
Alias of the reverse direction of IsMetricSeparated.finset_iUnion_left_iff
.
@[simp]
theorem
IsMetricSeparated.finset_iUnion_right_iff
{X : Type u_1}
[EMetricSpace X]
{ι : Type u_2}
{I : Finset ι}
{s : Set X}
{t : ι → Set X}
:
IsMetricSeparated s (⋃ i ∈ I, t i) ↔ ∀ i ∈ I, IsMetricSeparated s (t i)
theorem
IsMetricSeparated.finset_iUnion_right
{X : Type u_1}
[EMetricSpace X]
{ι : Type u_2}
{I : Finset ι}
{s : Set X}
{t : ι → Set X}
:
(∀ i ∈ I, IsMetricSeparated s (t i)) → IsMetricSeparated s (⋃ i ∈ I, t i)
Alias of the reverse direction of IsMetricSeparated.finset_iUnion_right_iff
.