Contractible spaces #
In this file, we define ContractibleSpace
, a space that is homotopy equivalent to Unit
.
def
ContinuousMap.Nullhomotopic
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
(f : C(X, Y))
:
A map is nullhomotopic if it is homotopic to a constant map.
Equations
- f.Nullhomotopic = ∃ (y : Y), f.Homotopic (ContinuousMap.const X y)
Instances For
theorem
ContinuousMap.nullhomotopic_of_constant
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
(y : Y)
:
(ContinuousMap.const X y).Nullhomotopic
theorem
ContinuousMap.Nullhomotopic.comp_right
{X : Type u_1}
{Y : Type u_2}
{Z : Type u_3}
[TopologicalSpace X]
[TopologicalSpace Y]
[TopologicalSpace Z]
{f : C(X, Y)}
(hf : f.Nullhomotopic)
(g : C(Y, Z))
:
(g.comp f).Nullhomotopic
theorem
ContinuousMap.Nullhomotopic.comp_left
{X : Type u_1}
{Y : Type u_2}
{Z : Type u_3}
[TopologicalSpace X]
[TopologicalSpace Y]
[TopologicalSpace Z]
{f : C(Y, Z)}
(hf : f.Nullhomotopic)
(g : C(X, Y))
:
(f.comp g).Nullhomotopic
A contractible space is one that is homotopy equivalent to Unit
.
- hequiv_unit' : Nonempty (ContinuousMap.HomotopyEquiv X Unit)
Instances
theorem
ContractibleSpace.hequiv_unit'
{X : Type u_1}
[TopologicalSpace X]
[self : ContractibleSpace X]
:
theorem
id_nullhomotopic
(X : Type u_1)
[TopologicalSpace X]
[ContractibleSpace X]
:
(ContinuousMap.id X).Nullhomotopic
theorem
contractible_iff_id_nullhomotopic
(Y : Type u_1)
[TopologicalSpace Y]
:
ContractibleSpace Y ↔ (ContinuousMap.id Y).Nullhomotopic
theorem
ContinuousMap.HomotopyEquiv.contractibleSpace
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
[ContractibleSpace Y]
(e : ContinuousMap.HomotopyEquiv X Y)
:
theorem
ContinuousMap.HomotopyEquiv.contractibleSpace_iff
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
(e : ContinuousMap.HomotopyEquiv X Y)
:
theorem
Homeomorph.contractibleSpace
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
[ContractibleSpace Y]
(e : X ≃ₜ Y)
:
theorem
Homeomorph.contractibleSpace_iff
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
(e : X ≃ₜ Y)
:
Equations
- ⋯ = ⋯
theorem
ContractibleSpace.hequiv
(X : Type u_1)
(Y : Type u_2)
[TopologicalSpace X]
[TopologicalSpace Y]
[ContractibleSpace X]
[ContractibleSpace Y]
:
@[instance 100]
instance
ContractibleSpace.instPathConnectedSpace
{X : Type u_1}
[TopologicalSpace X]
[ContractibleSpace X]
:
Equations
- ⋯ = ⋯