Clopen sets #
A clopen set is a set that is both closed and open.
theorem
IsClopen.isClosed
{X : Type u}
[TopologicalSpace X]
{s : Set X}
(hs : IsClopen s)
:
IsClosed s
@[simp]
Alias of the forward direction of isClopen_iff_frontier_eq_empty
.
theorem
IsClopen.union
{X : Type u}
[TopologicalSpace X]
{s : Set X}
{t : Set X}
(hs : IsClopen s)
(ht : IsClopen t)
:
theorem
IsClopen.inter
{X : Type u}
[TopologicalSpace X]
{s : Set X}
{t : Set X}
(hs : IsClopen s)
(ht : IsClopen t)
:
@[simp]
theorem
IsClopen.diff
{X : Type u}
[TopologicalSpace X]
{s : Set X}
{t : Set X}
(hs : IsClopen s)
(ht : IsClopen t)
:
theorem
IsClopen.himp
{X : Type u}
[TopologicalSpace X]
{s : Set X}
{t : Set X}
(hs : IsClopen s)
(ht : IsClopen t)
:
theorem
IsClopen.prod
{X : Type u}
{Y : Type v}
[TopologicalSpace X]
[TopologicalSpace Y]
{s : Set X}
{t : Set Y}
(hs : IsClopen s)
(ht : IsClopen t)
:
theorem
isClopen_iUnion_of_finite
{X : Type u}
{Y : Type v}
[TopologicalSpace X]
[Finite Y]
{s : Y → Set X}
(h : ∀ (i : Y), IsClopen (s i))
:
IsClopen (⋃ (i : Y), s i)
theorem
Set.Finite.isClopen_biUnion
{X : Type u}
{Y : Type v}
[TopologicalSpace X]
{s : Set Y}
{f : Y → Set X}
(hs : s.Finite)
(h : ∀ i ∈ s, IsClopen (f i))
:
IsClopen (⋃ i ∈ s, f i)
theorem
isClopen_biUnion_finset
{X : Type u}
{Y : Type v}
[TopologicalSpace X]
{s : Finset Y}
{f : Y → Set X}
(h : ∀ i ∈ s, IsClopen (f i))
:
IsClopen (⋃ i ∈ s, f i)
theorem
isClopen_iInter_of_finite
{X : Type u}
{Y : Type v}
[TopologicalSpace X]
[Finite Y]
{s : Y → Set X}
(h : ∀ (i : Y), IsClopen (s i))
:
IsClopen (⋂ (i : Y), s i)
theorem
Set.Finite.isClopen_biInter
{X : Type u}
{Y : Type v}
[TopologicalSpace X]
{s : Set Y}
(hs : s.Finite)
{f : Y → Set X}
(h : ∀ i ∈ s, IsClopen (f i))
:
IsClopen (⋂ i ∈ s, f i)
theorem
isClopen_biInter_finset
{X : Type u}
{Y : Type v}
[TopologicalSpace X]
{s : Finset Y}
{f : Y → Set X}
(h : ∀ i ∈ s, IsClopen (f i))
:
IsClopen (⋂ i ∈ s, f i)
theorem
IsClopen.preimage
{X : Type u}
{Y : Type v}
[TopologicalSpace X]
[TopologicalSpace Y]
{s : Set Y}
(h : IsClopen s)
{f : X → Y}
(hf : Continuous f)
:
theorem
ContinuousOn.preimage_isClopen_of_isClopen
{X : Type u}
{Y : Type v}
[TopologicalSpace X]
[TopologicalSpace Y]
{f : X → Y}
{s : Set X}
{t : Set Y}
(hf : ContinuousOn f s)
(hs : IsClopen s)
(ht : IsClopen t)
:
@[simp]
theorem
isClopen_discrete
{X : Type u}
[TopologicalSpace X]
[DiscreteTopology X]
(s : Set X)
:
IsClopen s
theorem
isClopen_range_sigmaMk
{ι : Type u_1}
{X : ι → Type u_2}
[(i : ι) → TopologicalSpace (X i)]
{i : ι}
:
theorem
QuotientMap.isClopen_preimage
{X : Type u}
{Y : Type v}
[TopologicalSpace X]
[TopologicalSpace Y]
{f : X → Y}
(hf : QuotientMap f)
{s : Set Y}
:
theorem
continuous_boolIndicator_iff_isClopen
{X : Type u}
[TopologicalSpace X]
(U : Set X)
:
Continuous U.boolIndicator ↔ IsClopen U
theorem
continuousOn_boolIndicator_iff_isClopen
{X : Type u}
[TopologicalSpace X]
(s : Set X)
(U : Set X)
:
ContinuousOn U.boolIndicator s ↔ IsClopen (Subtype.val ⁻¹' U)