Documentation

Mathlib.Topology.Algebra.Constructions.DomMulAct

Topological structure on DomMulAct _ #

In this file we define topology on DomMulAct _ and prove basic facts about this topology. The topology on Mᵈᵐᵃ is the same as the topology on M (formally, it is induced by DomMulAct.mk.symm, since the types aren't definitionally equal).

Equations
Equations
theorem DomAddAct.continuous_mk {M : Type u_1} [TopologicalSpace M] :
Continuous DomAddAct.mk
theorem DomMulAct.continuous_mk {M : Type u_1} [TopologicalSpace M] :
Continuous DomMulAct.mk
theorem DomAddAct.continuous_mk_symm {M : Type u_1} [TopologicalSpace M] :
Continuous DomAddAct.mk.symm
theorem DomMulAct.continuous_mk_symm {M : Type u_1} [TopologicalSpace M] :
Continuous DomMulAct.mk.symm
theorem DomAddAct.mkHomeomorph.proof_1 {M : Type u_1} [TopologicalSpace M] :
Continuous DomAddAct.mk.toFun

DomAddAct.mk as a homeomorphism

Equations
  • DomAddAct.mkHomeomorph = { toEquiv := DomAddAct.mk, continuous_toFun := , continuous_invFun := }
Instances For
    theorem DomAddAct.mkHomeomorph.proof_2 {M : Type u_1} [TopologicalSpace M] :
    Continuous DomAddAct.mk.invFun
    @[simp]
    theorem DomAddAct.mkHomeomorph_toEquiv {M : Type u_1} [TopologicalSpace M] :
    DomAddAct.mkHomeomorph.toEquiv = DomAddAct.mk
    @[simp]
    theorem DomMulAct.mkHomeomorph_toEquiv {M : Type u_1} [TopologicalSpace M] :
    DomMulAct.mkHomeomorph.toEquiv = DomMulAct.mk

    DomMulAct.mk as a homeomorphism.

    Equations
    • DomMulAct.mkHomeomorph = { toEquiv := DomMulAct.mk, continuous_toFun := , continuous_invFun := }
    Instances For
      @[simp]
      theorem DomAddAct.coe_mkHomeomorph {M : Type u_1} [TopologicalSpace M] :
      DomAddAct.mkHomeomorph = DomAddAct.mk
      @[simp]
      theorem DomMulAct.coe_mkHomeomorph {M : Type u_1} [TopologicalSpace M] :
      DomMulAct.mkHomeomorph = DomMulAct.mk
      @[simp]
      theorem DomAddAct.coe_mkHomeomorph_symm {M : Type u_1} [TopologicalSpace M] :
      DomAddAct.mkHomeomorph.symm = DomAddAct.mk.symm
      @[simp]
      theorem DomMulAct.coe_mkHomeomorph_symm {M : Type u_1} [TopologicalSpace M] :
      DomMulAct.mkHomeomorph.symm = DomMulAct.mk.symm
      theorem DomAddAct.inducing_mk {M : Type u_1} [TopologicalSpace M] :
      Inducing DomAddAct.mk
      theorem DomMulAct.inducing_mk {M : Type u_1} [TopologicalSpace M] :
      Inducing DomMulAct.mk
      theorem DomAddAct.embedding_mk {M : Type u_1} [TopologicalSpace M] :
      Embedding DomAddAct.mk
      theorem DomMulAct.embedding_mk {M : Type u_1} [TopologicalSpace M] :
      Embedding DomMulAct.mk
      theorem DomAddAct.quotientMap_mk {M : Type u_1} [TopologicalSpace M] :
      QuotientMap DomAddAct.mk
      theorem DomMulAct.quotientMap_mk {M : Type u_1} [TopologicalSpace M] :
      QuotientMap DomMulAct.mk
      theorem DomAddAct.inducing_mk_symm {M : Type u_1} [TopologicalSpace M] :
      Inducing DomAddAct.mk.symm
      theorem DomMulAct.inducing_mk_symm {M : Type u_1} [TopologicalSpace M] :
      Inducing DomMulAct.mk.symm
      theorem DomAddAct.embedding_mk_symm {M : Type u_1} [TopologicalSpace M] :
      Embedding DomAddAct.mk.symm
      theorem DomMulAct.embedding_mk_symm {M : Type u_1} [TopologicalSpace M] :
      Embedding DomMulAct.mk.symm
      theorem DomAddAct.openEmbedding_mk_symm {M : Type u_1} [TopologicalSpace M] :
      OpenEmbedding DomAddAct.mk.symm
      theorem DomMulAct.openEmbedding_mk_symm {M : Type u_1} [TopologicalSpace M] :
      OpenEmbedding DomMulAct.mk.symm
      theorem DomAddAct.quotientMap_mk_symm {M : Type u_1} [TopologicalSpace M] :
      QuotientMap DomAddAct.mk.symm
      theorem DomMulAct.quotientMap_mk_symm {M : Type u_1} [TopologicalSpace M] :
      QuotientMap DomMulAct.mk.symm
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      @[simp]
      theorem DomAddAct.map_mk_nhds {M : Type u_1} [TopologicalSpace M] (x : M) :
      Filter.map (DomAddAct.mk) (nhds x) = nhds (DomAddAct.mk x)
      @[simp]
      theorem DomMulAct.map_mk_nhds {M : Type u_1} [TopologicalSpace M] (x : M) :
      Filter.map (DomMulAct.mk) (nhds x) = nhds (DomMulAct.mk x)
      @[simp]
      theorem DomAddAct.map_mk_symm_nhds {M : Type u_1} [TopologicalSpace M] (x : Mᵈᵃᵃ) :
      Filter.map (DomAddAct.mk.symm) (nhds x) = nhds (DomAddAct.mk.symm x)
      @[simp]
      theorem DomMulAct.map_mk_symm_nhds {M : Type u_1} [TopologicalSpace M] (x : Mᵈᵐᵃ) :
      Filter.map (DomMulAct.mk.symm) (nhds x) = nhds (DomMulAct.mk.symm x)
      @[simp]
      theorem DomAddAct.comap_mk_nhds {M : Type u_1} [TopologicalSpace M] (x : Mᵈᵃᵃ) :
      Filter.comap (DomAddAct.mk) (nhds x) = nhds (DomAddAct.mk.symm x)
      @[simp]
      theorem DomMulAct.comap_mk_nhds {M : Type u_1} [TopologicalSpace M] (x : Mᵈᵐᵃ) :
      Filter.comap (DomMulAct.mk) (nhds x) = nhds (DomMulAct.mk.symm x)
      @[simp]
      theorem DomAddAct.comap_mk.symm_nhds {M : Type u_1} [TopologicalSpace M] (x : M) :
      Filter.comap (DomAddAct.mk.symm) (nhds x) = nhds (DomAddAct.mk x)
      @[simp]
      theorem DomMulAct.comap_mk.symm_nhds {M : Type u_1} [TopologicalSpace M] (x : M) :
      Filter.comap (DomMulAct.mk.symm) (nhds x) = nhds (DomMulAct.mk x)