Topological structure on DomMulAct _
#
In this file we define topology on DomMulAct _
and prove basic facts about this topology.
The topology on Mᵈᵐᵃ
is the same as the topology on M
(formally, it is induced by DomMulAct.mk.symm
, since the types aren't definitionally equal).
Equations
- DomAddAct.instTopologicalSpace = TopologicalSpace.induced (⇑DomAddAct.mk.symm) inst
Equations
- DomMulAct.instTopologicalSpace = TopologicalSpace.induced (⇑DomMulAct.mk.symm) inst
theorem
DomAddAct.continuous_mk_symm
{M : Type u_1}
[TopologicalSpace M]
:
Continuous ⇑DomAddAct.mk.symm
theorem
DomMulAct.continuous_mk_symm
{M : Type u_1}
[TopologicalSpace M]
:
Continuous ⇑DomMulAct.mk.symm
theorem
DomAddAct.mkHomeomorph.proof_1
{M : Type u_1}
[TopologicalSpace M]
:
Continuous DomAddAct.mk.toFun
DomAddAct.mk
as a homeomorphism
Equations
- DomAddAct.mkHomeomorph = { toEquiv := DomAddAct.mk, continuous_toFun := ⋯, continuous_invFun := ⋯ }
Instances For
theorem
DomAddAct.mkHomeomorph.proof_2
{M : Type u_1}
[TopologicalSpace M]
:
Continuous DomAddAct.mk.invFun
@[simp]
theorem
DomAddAct.mkHomeomorph_toEquiv
{M : Type u_1}
[TopologicalSpace M]
:
DomAddAct.mkHomeomorph.toEquiv = DomAddAct.mk
@[simp]
theorem
DomMulAct.mkHomeomorph_toEquiv
{M : Type u_1}
[TopologicalSpace M]
:
DomMulAct.mkHomeomorph.toEquiv = DomMulAct.mk
DomMulAct.mk
as a homeomorphism.
Equations
- DomMulAct.mkHomeomorph = { toEquiv := DomMulAct.mk, continuous_toFun := ⋯, continuous_invFun := ⋯ }
Instances For
@[simp]
theorem
DomAddAct.coe_mkHomeomorph
{M : Type u_1}
[TopologicalSpace M]
:
⇑DomAddAct.mkHomeomorph = ⇑DomAddAct.mk
@[simp]
theorem
DomMulAct.coe_mkHomeomorph
{M : Type u_1}
[TopologicalSpace M]
:
⇑DomMulAct.mkHomeomorph = ⇑DomMulAct.mk
@[simp]
theorem
DomAddAct.coe_mkHomeomorph_symm
{M : Type u_1}
[TopologicalSpace M]
:
⇑DomAddAct.mkHomeomorph.symm = ⇑DomAddAct.mk.symm
@[simp]
theorem
DomMulAct.coe_mkHomeomorph_symm
{M : Type u_1}
[TopologicalSpace M]
:
⇑DomMulAct.mkHomeomorph.symm = ⇑DomMulAct.mk.symm
theorem
DomAddAct.closedEmbedding_mk
{M : Type u_1}
[TopologicalSpace M]
:
ClosedEmbedding ⇑DomAddAct.mk
theorem
DomMulAct.closedEmbedding_mk
{M : Type u_1}
[TopologicalSpace M]
:
ClosedEmbedding ⇑DomMulAct.mk
theorem
DomAddAct.embedding_mk_symm
{M : Type u_1}
[TopologicalSpace M]
:
Embedding ⇑DomAddAct.mk.symm
theorem
DomMulAct.embedding_mk_symm
{M : Type u_1}
[TopologicalSpace M]
:
Embedding ⇑DomMulAct.mk.symm
theorem
DomAddAct.openEmbedding_mk_symm
{M : Type u_1}
[TopologicalSpace M]
:
OpenEmbedding ⇑DomAddAct.mk.symm
theorem
DomMulAct.openEmbedding_mk_symm
{M : Type u_1}
[TopologicalSpace M]
:
OpenEmbedding ⇑DomMulAct.mk.symm
theorem
DomAddAct.closedEmbedding_mk_symm
{M : Type u_1}
[TopologicalSpace M]
:
ClosedEmbedding ⇑DomAddAct.mk.symm
theorem
DomMulAct.closedEmbedding_mk_symm
{M : Type u_1}
[TopologicalSpace M]
:
ClosedEmbedding ⇑DomMulAct.mk.symm
theorem
DomAddAct.quotientMap_mk_symm
{M : Type u_1}
[TopologicalSpace M]
:
QuotientMap ⇑DomAddAct.mk.symm
theorem
DomMulAct.quotientMap_mk_symm
{M : Type u_1}
[TopologicalSpace M]
:
QuotientMap ⇑DomMulAct.mk.symm
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
instance
DomAddAct.instCompletelyNormalSpace
{M : Type u_1}
[TopologicalSpace M]
[CompletelyNormalSpace M]
:
Equations
- ⋯ = ⋯
instance
DomMulAct.instCompletelyNormalSpace
{M : Type u_1}
[TopologicalSpace M]
[CompletelyNormalSpace M]
:
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
instance
DomAddAct.instSeparableSpace
{M : Type u_1}
[TopologicalSpace M]
[TopologicalSpace.SeparableSpace M]
:
Equations
- ⋯ = ⋯
instance
DomMulAct.instSeparableSpace
{M : Type u_1}
[TopologicalSpace M]
[TopologicalSpace.SeparableSpace M]
:
Equations
- ⋯ = ⋯
instance
DomAddAct.instFirstCountableTopology
{M : Type u_1}
[TopologicalSpace M]
[FirstCountableTopology M]
:
Equations
- ⋯ = ⋯
instance
DomMulAct.instFirstCountableTopology
{M : Type u_1}
[TopologicalSpace M]
[FirstCountableTopology M]
:
Equations
- ⋯ = ⋯
instance
DomAddAct.instSecondCountableTopology
{M : Type u_1}
[TopologicalSpace M]
[SecondCountableTopology M]
:
Equations
- ⋯ = ⋯
instance
DomMulAct.instSecondCountableTopology
{M : Type u_1}
[TopologicalSpace M]
[SecondCountableTopology M]
:
Equations
- ⋯ = ⋯
@[simp]
theorem
DomAddAct.map_mk_nhds
{M : Type u_1}
[TopologicalSpace M]
(x : M)
:
Filter.map (⇑DomAddAct.mk) (nhds x) = nhds (DomAddAct.mk x)
@[simp]
theorem
DomMulAct.map_mk_nhds
{M : Type u_1}
[TopologicalSpace M]
(x : M)
:
Filter.map (⇑DomMulAct.mk) (nhds x) = nhds (DomMulAct.mk x)
@[simp]
theorem
DomAddAct.map_mk_symm_nhds
{M : Type u_1}
[TopologicalSpace M]
(x : Mᵈᵃᵃ)
:
Filter.map (⇑DomAddAct.mk.symm) (nhds x) = nhds (DomAddAct.mk.symm x)
@[simp]
theorem
DomMulAct.map_mk_symm_nhds
{M : Type u_1}
[TopologicalSpace M]
(x : Mᵈᵐᵃ)
:
Filter.map (⇑DomMulAct.mk.symm) (nhds x) = nhds (DomMulAct.mk.symm x)
@[simp]
theorem
DomAddAct.comap_mk_nhds
{M : Type u_1}
[TopologicalSpace M]
(x : Mᵈᵃᵃ)
:
Filter.comap (⇑DomAddAct.mk) (nhds x) = nhds (DomAddAct.mk.symm x)
@[simp]
theorem
DomMulAct.comap_mk_nhds
{M : Type u_1}
[TopologicalSpace M]
(x : Mᵈᵐᵃ)
:
Filter.comap (⇑DomMulAct.mk) (nhds x) = nhds (DomMulAct.mk.symm x)
@[simp]
theorem
DomAddAct.comap_mk.symm_nhds
{M : Type u_1}
[TopologicalSpace M]
(x : M)
:
Filter.comap (⇑DomAddAct.mk.symm) (nhds x) = nhds (DomAddAct.mk x)
@[simp]
theorem
DomMulAct.comap_mk.symm_nhds
{M : Type u_1}
[TopologicalSpace M]
(x : M)
:
Filter.comap (⇑DomMulAct.mk.symm) (nhds x) = nhds (DomMulAct.mk x)