Documentation

Mathlib.Tactic.CategoryTheory.BicategoricalComp

Bicategorical composition ⊗≫ (composition up to associators) #

We provide f ⊗≫ g, the bicategoricalComp operation, which automatically inserts associators and unitors as needed to make the target of f match the source of g.

class CategoryTheory.BicategoricalCoherence {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} (f : a b) (g : a b) :

A typeclass carrying a choice of bicategorical structural isomorphism between two objects. Used by the ⊗≫ bicategorical composition operator, and the coherence tactic.

  • hom : f g

    The chosen structural isomorphism between to 1-morphisms.

  • isIso : CategoryTheory.IsIso CategoryTheory.BicategoricalCoherence.hom
Instances
    theorem CategoryTheory.BicategoricalCoherence.isIso {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {f : a b} {g : a b} [self : CategoryTheory.BicategoricalCoherence f g] :
    CategoryTheory.IsIso CategoryTheory.BicategoricalCoherence.hom

    Notation for identities up to unitors and associators.

    Equations
    Instances For

      Construct an isomorphism between two objects in a bicategorical category out of unitors and associators.

      Equations
      Instances For
        def CategoryTheory.bicategoricalComp {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {f : a b} {g : a b} {h : a b} {i : a b} [CategoryTheory.BicategoricalCoherence g h] (η : f g) (θ : h i) :
        f i

        Compose two morphisms in a bicategorical category, inserting unitors and associators between as necessary.

        Equations
        Instances For

          Compose two morphisms in a bicategorical category, inserting unitors and associators between as necessary.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            def CategoryTheory.bicategoricalIsoComp {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {f : a b} {g : a b} {h : a b} {i : a b} [CategoryTheory.BicategoricalCoherence g h] (η : f g) (θ : h i) :
            f i

            Compose two isomorphisms in a bicategorical category, inserting unitors and associators between as necessary.

            Equations
            Instances For

              Compose two isomorphisms in a bicategorical category, inserting unitors and associators between as necessary.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem CategoryTheory.BicategoricalCoherence.refl_hom {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} (f : a b) :
                CategoryTheory.BicategoricalCoherence.hom = CategoryTheory.CategoryStruct.id f
                @[simp]
                theorem CategoryTheory.BicategoricalCoherence.whiskerLeft_hom {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} (f : a b) (g : b c) (h : b c) [CategoryTheory.BicategoricalCoherence g h] :
                CategoryTheory.BicategoricalCoherence.hom = CategoryTheory.Bicategory.whiskerLeft f CategoryTheory.BicategoricalCoherence.hom
                @[simp]
                theorem CategoryTheory.BicategoricalCoherence.whiskerRight_hom {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} (f : a b) (g : a b) (h : b c) [CategoryTheory.BicategoricalCoherence f g] :
                CategoryTheory.BicategoricalCoherence.hom = CategoryTheory.Bicategory.whiskerRight CategoryTheory.BicategoricalCoherence.hom h
                @[simp]
                theorem CategoryTheory.BicategoricalCoherence.left_hom {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} (f : a b) (g : a b) [CategoryTheory.BicategoricalCoherence f g] :
                CategoryTheory.BicategoricalCoherence.hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.leftUnitor f).hom CategoryTheory.BicategoricalCoherence.hom
                Equations
                • One or more equations did not get rendered due to their size.
                @[simp]
                theorem CategoryTheory.BicategoricalCoherence.left'_hom {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} (f : a b) (g : a b) [CategoryTheory.BicategoricalCoherence f g] :
                CategoryTheory.BicategoricalCoherence.hom = CategoryTheory.CategoryStruct.comp CategoryTheory.BicategoricalCoherence.hom (CategoryTheory.Bicategory.leftUnitor g).inv
                Equations
                • One or more equations did not get rendered due to their size.
                @[simp]
                theorem CategoryTheory.BicategoricalCoherence.right_hom {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} (f : a b) (g : a b) [CategoryTheory.BicategoricalCoherence f g] :
                CategoryTheory.BicategoricalCoherence.hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.rightUnitor f).hom CategoryTheory.BicategoricalCoherence.hom
                Equations
                • One or more equations did not get rendered due to their size.
                @[simp]
                theorem CategoryTheory.BicategoricalCoherence.right'_hom {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} (f : a b) (g : a b) [CategoryTheory.BicategoricalCoherence f g] :
                CategoryTheory.BicategoricalCoherence.hom = CategoryTheory.CategoryStruct.comp CategoryTheory.BicategoricalCoherence.hom (CategoryTheory.Bicategory.rightUnitor g).inv
                Equations
                • One or more equations did not get rendered due to their size.
                @[simp]
                theorem CategoryTheory.BicategoricalCoherence.assoc_hom {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {d : B} (f : a b) (g : b c) (h : c d) (i : a d) [CategoryTheory.BicategoricalCoherence (CategoryTheory.CategoryStruct.comp f (CategoryTheory.CategoryStruct.comp g h)) i] :
                CategoryTheory.BicategoricalCoherence.hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator f g h).hom CategoryTheory.BicategoricalCoherence.hom
                Equations
                • One or more equations did not get rendered due to their size.
                @[simp]
                theorem CategoryTheory.BicategoricalCoherence.assoc'_hom {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {d : B} (f : a b) (g : b c) (h : c d) (i : a d) [CategoryTheory.BicategoricalCoherence i (CategoryTheory.CategoryStruct.comp f (CategoryTheory.CategoryStruct.comp g h))] :
                CategoryTheory.BicategoricalCoherence.hom = CategoryTheory.CategoryStruct.comp CategoryTheory.BicategoricalCoherence.hom (CategoryTheory.Bicategory.associator f g h).inv
                Equations
                • One or more equations did not get rendered due to their size.
                @[simp]
                theorem CategoryTheory.bicategoricalComp_refl {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {f : a b} {g : a b} {h : a b} (η : f g) (θ : g h) :