Nilpotent elements in quotient rings #
theorem
Ideal.IsNilpotent.induction_on
{R : Type u_1}
{S : Type u_2}
[CommSemiring R]
[CommRing S]
[Algebra R S]
(I : Ideal S)
(hI : IsNilpotent I)
{P : ⦃S : Type u_2⦄ → [inst : CommRing S] → Ideal S → Prop}
(h₁ : ∀ ⦃S : Type u_2⦄ [inst : CommRing S] (I : Ideal S), I ^ 2 = ⊥ → P I)
(h₂ : ∀ ⦃S : Type u_2⦄ [inst : CommRing S] (I J : Ideal S), I ≤ J → P I → P (Ideal.map (Ideal.Quotient.mk I) J) → P J)
:
P I
Let P
be a property on ideals. If P
holds for square-zero ideals, and if
P I → P (J ⧸ I) → P J
, then P
holds for all nilpotent ideals.
theorem
IsNilpotent.isUnit_quotient_mk_iff
{R : Type u_3}
[CommRing R]
{I : Ideal R}
(hI : IsNilpotent I)
{x : R}
:
IsUnit ((Ideal.Quotient.mk I) x) ↔ IsUnit x