Documentation

Mathlib.RingTheory.Presentation

Presentations of algebras #

A presentation of an R-algebra S is a distinguished family of generators and relations.

Main definition #

We also give constructors for localization and base change.

TODO #

Notes #

This contribution was created as part of the AIM workshop "Formalizing algebraic geometry" in June 2024.

structure Algebra.Presentation (R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] extends Algebra.Generators :
Type (max (max (max (t + 1) u) v) (w + 1))

A presentation of an R-algebra S is a family of generators with

  1. rels: The type of relations.
  2. relation : relations → MvPolynomial vars R: The assignment of each relation to a polynomial in the generators.
  • vars : Type w
  • val : self.varsS
  • σ' : SMvPolynomial self.vars R
  • aeval_val_σ' : ∀ (s : S), (MvPolynomial.aeval self.val) (self.σ' s) = s
  • rels : Type t

    The type of relations.

  • relation : self.relsself.Ring

    The assignment of each relation to a polynomial in the generators.

  • span_range_relation_eq_ker : Ideal.span (Set.range self.relation) = self.ker

    The relations span the kernel of the canonical map.

Instances For
    theorem Algebra.Presentation.span_range_relation_eq_ker {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (self : Algebra.Presentation R S) :
    Ideal.span (Set.range self.relation) = self.ker

    The relations span the kernel of the canonical map.

    @[simp]
    theorem Algebra.Presentation.aeval_val_relation {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.Presentation R S) (i : P.rels) :
    (MvPolynomial.aeval P.val) (P.relation i) = 0
    @[reducible, inline]
    abbrev Algebra.Presentation.Quotient {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.Presentation R S) :
    Type (max w u)

    The polynomial algebra wrt a family of generators modulo a family of relations.

    Equations
    • P.Quotient = (P.Ring P.ker)
    Instances For
      def Algebra.Presentation.quotientEquiv {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.Presentation R S) :
      P.Quotient ≃ₐ[P.Ring] S

      P.Quotient is P.Ring-isomorphic to S and in particular R-isomorphic to S.

      Equations
      Instances For
        @[simp]
        theorem Algebra.Presentation.quotientEquiv_mk {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.Presentation R S) (p : P.Ring) :
        P.quotientEquiv ((Ideal.Quotient.mk P.ker) p) = (algebraMap P.Ring S) p
        @[simp]
        theorem Algebra.Presentation.quotientEquiv_symm {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.Presentation R S) (x : S) :
        P.quotientEquiv.symm x = (Ideal.Quotient.mk P.ker) (P x)
        noncomputable def Algebra.Presentation.dimension {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.Presentation R S) :

        Dimension of a presentation defined as the cardinality of the generators minus the cardinality of the relations.

        Note: this definition is completely non-sensical for non-finite presentations and even then for this to make sense, you should assume that the presentation is a complete intersection.

        Equations
        Instances For

          A presentation is finite if there are only finitely-many relations and finitely-many relations.

          Instances
            theorem Algebra.Presentation.IsFinite.finite_vars {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Presentation R S} [self : P.IsFinite] :
            Finite P.vars
            theorem Algebra.Presentation.IsFinite.finite_rels {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Presentation R S} [self : P.IsFinite] :
            Finite P.rels
            theorem Algebra.Presentation.ideal_fg_of_isFinite {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.Presentation R S) [P.IsFinite] :
            P.ker.FG

            If a presentation is finite, the corresponding quotient is of finite presentation.

            Equations
            • =
            @[simp]
            theorem Algebra.Presentation.localizationAway_relation {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (r : R) [IsLocalization.Away r S] :
            ∀ (x : Unit), (Algebra.Presentation.localizationAway r).relation x = MvPolynomial.C r * MvPolynomial.X () - 1
            noncomputable def Algebra.Presentation.localizationAway {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (r : R) [IsLocalization.Away r S] :

            If S is the localization of R away from r, we can construct a natural presentation of S as R-algebra with a single generator X and the relation r * X - 1 = 0.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem Algebra.Presentation.baseChange_relation {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type u_1} [CommRing T] [Algebra R T] (P : Algebra.Presentation R S) (i : P.rels) :
              P.baseChange.relation i = (MvPolynomial.map (algebraMap R T)) (P.relation i)
              theorem Algebra.Presentation.baseChange_rels {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type u_1} [CommRing T] [Algebra R T] (P : Algebra.Presentation R S) :
              P.baseChange.rels = P.rels
              noncomputable def Algebra.Presentation.baseChange {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type u_1} [CommRing T] [Algebra R T] (P : Algebra.Presentation R S) :

              If P is a presentation of S over R and T is an R-algebra, we obtain a natural presentation of T ⊗[R] S over T.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For