Documentation

Mathlib.RingTheory.MaximalSpectrum

Maximal spectrum of a commutative ring #

The maximal spectrum of a commutative ring is the type of all maximal ideals. It is naturally a subset of the prime spectrum endowed with the subspace topology.

Main definitions #

Implementation notes #

The Zariski topology on the maximal spectrum is defined as the subspace topology induced by the natural inclusion into the prime spectrum to avoid API duplication for zero loci.

theorem MaximalSpectrum.ext {R : Type u} :
∀ {inst : CommRing R} (x y : MaximalSpectrum R), x.asIdeal = y.asIdealx = y
theorem MaximalSpectrum.ext_iff {R : Type u} :
∀ {inst : CommRing R} (x y : MaximalSpectrum R), x = y x.asIdeal = y.asIdeal
structure MaximalSpectrum (R : Type u) [CommRing R] :

The maximal spectrum of a commutative ring R is the type of all maximal ideals of R.

  • asIdeal : Ideal R
  • IsMaximal : self.asIdeal.IsMaximal
Instances For
    theorem MaximalSpectrum.IsMaximal {R : Type u} [CommRing R] (self : MaximalSpectrum R) :
    self.asIdeal.IsMaximal

    The natural inclusion from the maximal spectrum to the prime spectrum.

    Equations
    • x.toPrimeSpectrum = { asIdeal := x.asIdeal, isPrime := }
    Instances For
      theorem MaximalSpectrum.toPrimeSpectrum_injective {R : Type u} [CommRing R] :
      Function.Injective MaximalSpectrum.toPrimeSpectrum
      theorem MaximalSpectrum.iInf_localization_eq_bot (R : Type u) [CommRing R] [IsDomain R] (K : Type v) [Field K] [Algebra R K] [IsFractionRing R K] :
      ⨅ (v : MaximalSpectrum R), Localization.subalgebra.ofField K v.asIdeal.primeCompl =

      An integral domain is equal to the intersection of its localizations at all its maximal ideals viewed as subalgebras of its field of fractions.

      theorem PrimeSpectrum.iInf_localization_eq_bot (R : Type u) [CommRing R] [IsDomain R] (K : Type v) [Field K] [Algebra R K] [IsFractionRing R K] :
      ⨅ (v : PrimeSpectrum R), Localization.subalgebra.ofField K v.asIdeal.primeCompl =

      An integral domain is equal to the intersection of its localizations at all its prime ideals viewed as subalgebras of its field of fractions.