Documentation

Mathlib.RingTheory.Localization.AtPrime

Localizations of commutative rings at the complement of a prime ideal #

Main definitions #

Main results #

Implementation notes #

See RingTheory.Localization.Basic for a design overview.

Tags #

localization, ring localization, commutative ring localization, characteristic predicate, commutative ring, field of fractions

def Ideal.primeCompl {R : Type u_1} [CommSemiring R] (P : Ideal R) [hp : P.IsPrime] :

The complement of a prime ideal P ⊆ R is a submonoid of R.

Equations
  • P.primeCompl = { carrier := (P), mul_mem' := , one_mem' := }
Instances For
    theorem Ideal.primeCompl_le_nonZeroDivisors {R : Type u_1} [CommSemiring R] (P : Ideal R) [hp : P.IsPrime] [NoZeroDivisors R] :
    P.primeCompl nonZeroDivisors R
    @[reducible, inline]
    abbrev IsLocalization.AtPrime {R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (P : Ideal R) [hp : P.IsPrime] :

    Given a prime ideal P, the typeclass IsLocalization.AtPrime S P states that S is isomorphic to the localization of R at the complement of P.

    Equations
    Instances For
      @[reducible, inline]
      abbrev Localization.AtPrime {R : Type u_1} [CommSemiring R] (P : Ideal R) [hp : P.IsPrime] :
      Type u_1

      Given a prime ideal P, Localization.AtPrime P is a localization of R at the complement of P, as a quotient type.

      Equations
      Instances For
        theorem IsLocalization.AtPrime.Nontrivial {R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (P : Ideal R) [hp : P.IsPrime] [IsLocalization.AtPrime S P] :
        theorem IsLocalization.AtPrime.localRing {R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (P : Ideal R) [hp : P.IsPrime] [IsLocalization.AtPrime S P] :
        instance Localization.AtPrime.localRing {R : Type u_1} [CommSemiring R] (P : Ideal R) [hp : P.IsPrime] :
        LocalRing (Localization P.primeCompl)

        The localization of R at the complement of a prime ideal is a local ring.

        Equations
        • =
        instance IsLocalization.isDomain_of_local_atPrime {A : Type u_4} [CommRing A] [IsDomain A] {P : Ideal A} :
        ∀ (x : P.IsPrime), IsDomain (Localization.AtPrime P)

        The localization of an integral domain at the complement of a prime ideal is an integral domain.

        Equations
        • =
        def IsLocalization.AtPrime.orderIsoOfPrime {R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] :
        { p : Ideal S // p.IsPrime } ≃o { p : Ideal R // p.IsPrime p I }

        The prime ideals in the localization of a commutative ring at a prime ideal I are in order-preserving bijection with the prime ideals contained in I.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem IsLocalization.AtPrime.isUnit_to_map_iff {R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] (x : R) :
          IsUnit ((algebraMap R S) x) x I.primeCompl
          theorem IsLocalization.AtPrime.to_map_mem_maximal_iff {R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] (x : R) (h : optParam (LocalRing S) ) :
          theorem IsLocalization.AtPrime.isUnit_mk'_iff {R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] (x : R) (y : I.primeCompl) :
          IsUnit (IsLocalization.mk' S x y) x I.primeCompl
          theorem IsLocalization.AtPrime.mk'_mem_maximal_iff {R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] (x : R) (y : I.primeCompl) (h : optParam (LocalRing S) ) :

          The unique maximal ideal of the localization at I.primeCompl lies over the ideal I.

          The image of I in the localization at I.primeCompl is a maximal ideal, and in particular it is the unique maximal ideal given by the local ring structure AtPrime.localRing

          theorem Localization.le_comap_primeCompl_iff {R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] {I : Ideal R} [hI : I.IsPrime] {J : Ideal P} [hJ : J.IsPrime] {f : R →+* P} :
          I.primeCompl Submonoid.comap f J.primeCompl Ideal.comap f J I
          noncomputable def Localization.localRingHom {R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : I.IsPrime] (J : Ideal P) [J.IsPrime] (f : R →+* P) (hIJ : I = Ideal.comap f J) :

          For a ring hom f : R →+* S and a prime ideal J in S, the induced ring hom from the localization of R at J.comap f to the localization of S at J.

          To make this definition more flexible, we allow any ideal I of R as input, together with a proof that I = J.comap f. This can be useful when I is not definitionally equal to J.comap f.

          Equations
          Instances For
            theorem Localization.localRingHom_to_map {R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : I.IsPrime] (J : Ideal P) [J.IsPrime] (f : R →+* P) (hIJ : I = Ideal.comap f J) (x : R) :
            theorem Localization.localRingHom_mk' {R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : I.IsPrime] (J : Ideal P) [J.IsPrime] (f : R →+* P) (hIJ : I = Ideal.comap f J) (x : R) (y : I.primeCompl) :
            instance Localization.isLocalRingHom_localRingHom {R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : I.IsPrime] (J : Ideal P) [hJ : J.IsPrime] (f : R →+* P) (hIJ : I = Ideal.comap f J) :
            Equations
            • =
            theorem Localization.localRingHom_unique {R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : I.IsPrime] (J : Ideal P) [J.IsPrime] (f : R →+* P) (hIJ : I = Ideal.comap f J) {j : Localization.AtPrime I →+* Localization.AtPrime J} (hj : ∀ (x : R), j ((algebraMap R (Localization.AtPrime I)) x) = (algebraMap P (Localization.AtPrime J)) (f x)) :
            theorem Localization.localRingHom_comp {R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : I.IsPrime] {S : Type u_4} [CommSemiring S] (J : Ideal S) [hJ : J.IsPrime] (K : Ideal P) [hK : K.IsPrime] (f : R →+* S) (hIJ : I = Ideal.comap f J) (g : S →+* P) (hJK : J = Ideal.comap g K) :
            Localization.localRingHom I K (g.comp f) = (Localization.localRingHom J K g hJK).comp (Localization.localRingHom I J f hIJ)