Idempotents in rings #
The predicate IsIdempotentElem
is defined for general monoids in Algebra/Ring/Idempotents.lean
.
In this file we provide various results regarding idempotent elements in rings.
Main definitions #
OrthogonalIdempotents
: A family{ eᵢ }
of idempotent elements is orthogonal ifeᵢ * eⱼ = 0
for alli ≠ j
.CompleteOrthogonalIdempotents
: A family{ eᵢ }
of orthogonal idempotent elements is complete if∑ eᵢ = 1
.
Main results #
CompleteOrthogonalIdempotents.lift_of_isNilpotent_ker
: If the kernel off : R →+* S
consists of nilpotent elements, and{ eᵢ }
is a family of complete orthogonal idempotents in the range off
, then{ eᵢ }
is the image of some complete orthogonal idempotents inR
.existsUnique_isIdempotentElem_eq_of_ker_isNilpotent
: IfR
is commutative and the kernel off : R →+* S
consists of nilpotent elements, then every idempotent in the range off
lifts to a unique idempotent inR
.CompleteOrthogonalIdempotents.bijective_pi
: IfR
is commutative, then a family{ eᵢ }
of complete orthogonal idempotent elements induces a ring isomorphismR ≃ ∏ R ⧸ ⟨1 - eᵢ⟩
.
theorem
exists_isIdempotentElem_mul_eq_zero_of_ker_isNilpotent_aux
{R : Type u_1}
{S : Type u_2}
[Ring R]
[Ring S]
(f : R →+* S)
(h : ∀ x ∈ RingHom.ker f, IsNilpotent x)
(e₁ : S)
(he : e₁ ∈ f.range)
(he₁ : IsIdempotentElem e₁)
(e₂ : R)
(he₂ : IsIdempotentElem e₂)
(he₁e₂ : e₁ * f e₂ = 0)
:
theorem
exists_isIdempotentElem_mul_eq_zero_of_ker_isNilpotent
{R : Type u_1}
{S : Type u_2}
[Ring R]
[Ring S]
(f : R →+* S)
(h : ∀ x ∈ RingHom.ker f, IsNilpotent x)
(e₁ : S)
(he : e₁ ∈ f.range)
(he₁ : IsIdempotentElem e₁)
(e₂ : R)
(he₂ : IsIdempotentElem e₂)
(he₁e₂ : e₁ * f e₂ = 0)
(he₂e₁ : f e₂ * e₁ = 0)
:
Orthogonal idempotents lift along nil ideals.
theorem
exists_isIdempotentElem_eq_of_ker_isNilpotent
{R : Type u_1}
{S : Type u_2}
[Ring R]
[Ring S]
(f : R →+* S)
(h : ∀ x ∈ RingHom.ker f, IsNilpotent x)
(e : S)
(he : e ∈ f.range)
(he' : IsIdempotentElem e)
:
∃ (e' : R), IsIdempotentElem e' ∧ f e' = e
Idempotents lift along nil ideals.
theorem
orthogonalIdempotents_iff
{R : Type u_1}
[Ring R]
{I : Type u_3}
(e : I → R)
:
OrthogonalIdempotents e ↔ (∀ (i : I), IsIdempotentElem (e i)) ∧ ∀ (i j : I), i ≠ j → e i * e j = 0
A family { eᵢ }
of idempotent elements is orthogonal if eᵢ * eⱼ = 0
for all i ≠ j
.
- idem : ∀ (i : I), IsIdempotentElem (e i)
Instances For
theorem
OrthogonalIdempotents.idem
{R : Type u_1}
[Ring R]
{I : Type u_3}
{e : I → R}
(self : OrthogonalIdempotents e)
(i : I)
:
IsIdempotentElem (e i)
theorem
OrthogonalIdempotents.ortho
{R : Type u_1}
[Ring R]
{I : Type u_3}
{e : I → R}
(self : OrthogonalIdempotents e)
(i : I)
(j : I)
:
theorem
OrthogonalIdempotents.mul_eq
{R : Type u_1}
[Ring R]
{I : Type u_3}
{e : I → R}
[DecidableEq I]
(he : OrthogonalIdempotents e)
(i : I)
(j : I)
:
theorem
OrthogonalIdempotents.iff_mul_eq
{R : Type u_1}
[Ring R]
{I : Type u_3}
{e : I → R}
[DecidableEq I]
:
OrthogonalIdempotents e ↔ ∀ (i j : I), e i * e j = if i = j then e i else 0
theorem
OrthogonalIdempotents.isIdempotentElem_sum
{R : Type u_1}
[Ring R]
{I : Type u_3}
[Fintype I]
{e : I → R}
(he : OrthogonalIdempotents e)
:
IsIdempotentElem (∑ i : I, e i)
theorem
OrthogonalIdempotents.map
{R : Type u_1}
{S : Type u_2}
[Ring R]
[Ring S]
(f : R →+* S)
{I : Type u_3}
{e : I → R}
(he : OrthogonalIdempotents e)
:
OrthogonalIdempotents (⇑f ∘ e)
theorem
OrthogonalIdempotents.map_injective_iff
{R : Type u_1}
{S : Type u_2}
[Ring R]
[Ring S]
(f : R →+* S)
{I : Type u_3}
{e : I → R}
(hf : Function.Injective ⇑f)
:
OrthogonalIdempotents (⇑f ∘ e) ↔ OrthogonalIdempotents e
theorem
OrthogonalIdempotents.embedding
{R : Type u_1}
[Ring R]
{I : Type u_3}
{e : I → R}
(he : OrthogonalIdempotents e)
{J : Type u_4}
(i : J ↪ I)
:
OrthogonalIdempotents (e ∘ ⇑i)
theorem
OrthogonalIdempotents.equiv
{R : Type u_1}
[Ring R]
{I : Type u_3}
{e : I → R}
{J : Type u_4}
(i : J ≃ I)
:
OrthogonalIdempotents (e ∘ ⇑i) ↔ OrthogonalIdempotents e
theorem
OrthogonalIdempotents.unique
{R : Type u_1}
[Ring R]
{I : Type u_3}
{e : I → R}
[Unique I]
:
OrthogonalIdempotents e ↔ IsIdempotentElem (e default)
theorem
OrthogonalIdempotents.option
{R : Type u_1}
[Ring R]
{I : Type u_3}
[Fintype I]
{e : I → R}
(he : OrthogonalIdempotents e)
(x : R)
(hx : IsIdempotentElem x)
(hx₁ : x * ∑ i : I, e i = 0)
(hx₂ : (∑ i : I, e i) * x = 0)
:
OrthogonalIdempotents fun (x_1 : Option I) => x_1.elim x e
theorem
OrthogonalIdempotents.lift_of_isNilpotent_ker_aux
{R : Type u_1}
{S : Type u_2}
[Ring R]
[Ring S]
(f : R →+* S)
(h : ∀ x ∈ RingHom.ker f, IsNilpotent x)
{n : ℕ}
{e : Fin n → S}
(he : OrthogonalIdempotents e)
(he' : ∀ (i : Fin n), e i ∈ f.range)
:
∃ (e' : Fin n → R), OrthogonalIdempotents e' ∧ ⇑f ∘ e' = e
theorem
OrthogonalIdempotents.lift_of_isNilpotent_ker
{R : Type u_1}
{S : Type u_2}
[Ring R]
[Ring S]
(f : R →+* S)
{I : Type u_3}
[Fintype I]
(h : ∀ x ∈ RingHom.ker f, IsNilpotent x)
{e : I → S}
(he : OrthogonalIdempotents e)
(he' : ∀ (i : I), e i ∈ f.range)
:
∃ (e' : I → R), OrthogonalIdempotents e' ∧ ⇑f ∘ e' = e
A family of orthogonal idempotents lift along nil ideals.
theorem
completeOrthogonalIdempotents_iff
{R : Type u_1}
[Ring R]
{I : Type u_3}
[Fintype I]
(e : I → R)
:
CompleteOrthogonalIdempotents e ↔ OrthogonalIdempotents e ∧ ∑ i : I, e i = 1
structure
CompleteOrthogonalIdempotents
{R : Type u_1}
[Ring R]
{I : Type u_3}
[Fintype I]
(e : I → R)
extends
OrthogonalIdempotents
:
A family { eᵢ }
of idempotent elements is complete orthogonal if
- (orthogonal)
eᵢ * eⱼ = 0
for alli ≠ j
. - (complete)
∑ eᵢ = 1
- idem : ∀ (i : I), IsIdempotentElem (e i)
- complete : ∑ i : I, e i = 1
Instances For
theorem
CompleteOrthogonalIdempotents.complete
{R : Type u_1}
[Ring R]
{I : Type u_3}
[Fintype I]
{e : I → R}
(self : CompleteOrthogonalIdempotents e)
:
∑ i : I, e i = 1
theorem
CompleteOrthogonalIdempotents.unique_iff
{R : Type u_1}
[Ring R]
{I : Type u_3}
[Fintype I]
{e : I → R}
[Unique I]
:
CompleteOrthogonalIdempotents e ↔ e default = 1
theorem
CompleteOrthogonalIdempotents.pair_iff
{R : Type u_1}
[Ring R]
{x : R}
{y : R}
:
CompleteOrthogonalIdempotents ![x, y] ↔ IsIdempotentElem x ∧ y = 1 - x
theorem
CompleteOrthogonalIdempotents.of_isIdempotentElem
{R : Type u_1}
[Ring R]
{e : R}
(he : IsIdempotentElem e)
:
CompleteOrthogonalIdempotents ![e, 1 - e]
theorem
CompleteOrthogonalIdempotents.single
{I : Type u_4}
[Fintype I]
[DecidableEq I]
(R : I → Type u_5)
[(i : I) → Ring (R i)]
:
CompleteOrthogonalIdempotents fun (x : I) => Pi.single x 1
theorem
CompleteOrthogonalIdempotents.map
{R : Type u_1}
{S : Type u_2}
[Ring R]
[Ring S]
(f : R →+* S)
{I : Type u_3}
[Fintype I]
{e : I → R}
(he : CompleteOrthogonalIdempotents e)
:
CompleteOrthogonalIdempotents (⇑f ∘ e)
theorem
CompleteOrthogonalIdempotents.map_injective_iff
{R : Type u_1}
{S : Type u_2}
[Ring R]
[Ring S]
(f : R →+* S)
{I : Type u_3}
[Fintype I]
{e : I → R}
(hf : Function.Injective ⇑f)
:
theorem
CompleteOrthogonalIdempotents.option
{R : Type u_1}
[Ring R]
{I : Type u_3}
[Fintype I]
{e : I → R}
(he : OrthogonalIdempotents e)
:
CompleteOrthogonalIdempotents fun (x : Option I) => x.elim (1 - ∑ i : I, e i) e
theorem
CompleteOrthogonalIdempotents.of_subsingleton
{R : Type u_1}
[Ring R]
{I : Type u_3}
[Fintype I]
{e : I → R}
[Subsingleton R]
:
theorem
CompleteOrthogonalIdempotents.lift_of_isNilpotent_ker_aux
{R : Type u_1}
{S : Type u_2}
[Ring R]
[Ring S]
(f : R →+* S)
(h : ∀ x ∈ RingHom.ker f, IsNilpotent x)
{n : ℕ}
{e : Fin n → S}
(he : CompleteOrthogonalIdempotents e)
(he' : ∀ (i : Fin n), e i ∈ f.range)
:
∃ (e' : Fin n → R), CompleteOrthogonalIdempotents e' ∧ ⇑f ∘ e' = e
theorem
CompleteOrthogonalIdempotents.lift_of_isNilpotent_ker
{R : Type u_1}
{S : Type u_2}
[Ring R]
[Ring S]
(f : R →+* S)
{I : Type u_3}
[Fintype I]
(h : ∀ x ∈ RingHom.ker f, IsNilpotent x)
{e : I → S}
(he : CompleteOrthogonalIdempotents e)
(he' : ∀ (i : I), e i ∈ f.range)
:
∃ (e' : I → R), CompleteOrthogonalIdempotents e' ∧ ⇑f ∘ e' = e
A system of complete orthogonal idempotents lift along nil ideals.
theorem
eq_of_isNilpotent_sub_of_isIdempotentElem_of_commute
{R : Type u_1}
[Ring R]
{e₁ : R}
{e₂ : R}
(he₁ : IsIdempotentElem e₁)
(he₂ : IsIdempotentElem e₂)
(H : IsNilpotent (e₁ - e₂))
(H' : Commute e₁ e₂)
:
e₁ = e₂
theorem
CompleteOrthogonalIdempotents.of_ker_isNilpotent_of_isMulCentral
{R : Type u_1}
{S : Type u_2}
[Ring R]
[Ring S]
(f : R →+* S)
{I : Type u_3}
[Fintype I]
{e : I → R}
(h : ∀ x ∈ RingHom.ker f, IsNilpotent x)
(he : ∀ (i : I), IsIdempotentElem (e i))
(he' : ∀ (i : I), IsMulCentral (e i))
(he'' : CompleteOrthogonalIdempotents (⇑f ∘ e))
:
theorem
eq_of_isNilpotent_sub_of_isIdempotentElem
{R : Type u_1}
[CommRing R]
{e₁ : R}
{e₂ : R}
(he₁ : IsIdempotentElem e₁)
(he₂ : IsIdempotentElem e₂)
(H : IsNilpotent (e₁ - e₂))
:
e₁ = e₂
theorem
existsUnique_isIdempotentElem_eq_of_ker_isNilpotent
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[Ring S]
(f : R →+* S)
(h : ∀ x ∈ RingHom.ker f, IsNilpotent x)
(e : S)
(he : e ∈ f.range)
(he' : IsIdempotentElem e)
:
∃! e' : R, IsIdempotentElem e' ∧ f e' = e
theorem
CompleteOrthogonalIdempotents.of_ker_isNilpotent
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[Ring S]
(f : R →+* S)
{I : Type u_3}
[Fintype I]
{e : I → R}
(h : ∀ x ∈ RingHom.ker f, IsNilpotent x)
(he : ∀ (i : I), IsIdempotentElem (e i))
(he' : CompleteOrthogonalIdempotents (⇑f ∘ e))
:
theorem
OrthogonalIdempotents.prod_one_sub
{R : Type u_1}
[CommRing R]
{I : Type u_3}
[Fintype I]
{e : I → R}
(he : OrthogonalIdempotents e)
:
theorem
CompleteOrthogonalIdempotents.prod_one_sub
{R : Type u_1}
[CommRing R]
{I : Type u_3}
[Fintype I]
{e : I → R}
(he : CompleteOrthogonalIdempotents e)
:
theorem
CompleteOrthogonalIdempotents.of_prod_one_sub
{R : Type u_1}
[CommRing R]
{I : Type u_3}
[Fintype I]
{e : I → R}
(he : OrthogonalIdempotents e)
(he' : ∏ i : I, (1 - e i) = 0)
:
theorem
OrthogonalIdempotents.surjective_pi
{R : Type u_1}
[CommRing R]
{I : Type u_3}
[Fintype I]
{e : I → R}
(he : OrthogonalIdempotents e)
:
Function.Surjective ⇑(Pi.ringHom fun (i : I) => Ideal.Quotient.mk (Ideal.span {1 - e i}))
A family of orthogonal idempotents induces an surjection R ≃+* ∏ R ⧸ ⟨1 - eᵢ⟩
theorem
CompleteOrthogonalIdempotents.bijective_pi
{R : Type u_1}
[CommRing R]
{I : Type u_3}
[Fintype I]
{e : I → R}
(he : CompleteOrthogonalIdempotents e)
:
Function.Bijective ⇑(Pi.ringHom fun (i : I) => Ideal.Quotient.mk (Ideal.span {1 - e i}))
A family of complete orthogonal idempotents induces an isomorphism R ≃+* ∏ R ⧸ ⟨1 - eᵢ⟩
theorem
CompleteOrthogonalIdempotents.bijective_pi'
{R : Type u_1}
[CommRing R]
{I : Type u_3}
[Fintype I]
{e : I → R}
(he : CompleteOrthogonalIdempotents fun (x : I) => 1 - e x)
:
Function.Bijective ⇑(Pi.ringHom fun (i : I) => Ideal.Quotient.mk (Ideal.span {e i}))
theorem
bijective_pi_of_isIdempotentElem
{R : Type u_1}
[CommRing R]
{I : Type u_3}
[Fintype I]
(e : I → R)
(he : ∀ (i : I), IsIdempotentElem (e i))
(he₁ : ∀ (i j : I), i ≠ j → (1 - e i) * (1 - e j) = 0)
(he₂ : ∏ i : I, e i = 0)
:
Function.Bijective ⇑(Pi.ringHom fun (i : I) => Ideal.Quotient.mk (Ideal.span {e i}))