Results #
Derivation.instLieAlgebra
: TheR
-derivations fromA
toA
form a Lie algebra overR
.
Lie structures #
instance
Derivation.instBracket
{R : Type u_1}
[CommRing R]
{A : Type u_2}
[CommRing A]
[Algebra R A]
:
Bracket (Derivation R A A) (Derivation R A A)
The commutator of derivations is again a derivation.
Equations
- Derivation.instBracket = { bracket := fun (D1 D2 : Derivation R A A) => Derivation.mk' ⁅↑D1, ↑D2⁆ ⋯ }
theorem
Derivation.commutator_apply
{R : Type u_1}
[CommRing R]
{A : Type u_2}
[CommRing A]
[Algebra R A]
{D1 : Derivation R A A}
{D2 : Derivation R A A}
(a : A)
:
instance
Derivation.instLieRing
{R : Type u_1}
[CommRing R]
{A : Type u_2}
[CommRing A]
[Algebra R A]
:
LieRing (Derivation R A A)
Equations
- Derivation.instLieRing = LieRing.mk ⋯ ⋯ ⋯ ⋯
instance
Derivation.instLieAlgebra
{R : Type u_1}
[CommRing R]
{A : Type u_2}
[CommRing A]
[Algebra R A]
:
LieAlgebra R (Derivation R A A)
Equations
- Derivation.instLieAlgebra = let __src := Derivation.instModule; LieAlgebra.mk ⋯