Variance of random variables #
We define the variance of a real-valued random variable as Var[X] = 𝔼[(X - 𝔼[X])^2]
(in the
ProbabilityTheory
locale).
Main definitions #
ProbabilityTheory.evariance
: the variance of a real-valued random variable as an extended non-negative real.ProbabilityTheory.variance
: the variance of a real-valued random variable as a real number.
Main results #
ProbabilityTheory.variance_le_expectation_sq
: the inequalityVar[X] ≤ 𝔼[X^2]
.ProbabilityTheory.meas_ge_le_variance_div_sq
: Chebyshev's inequality, i.e.,ℙ {ω | c ≤ |X ω - 𝔼[X]|} ≤ ENNReal.ofReal (Var[X] / c ^ 2)
.ProbabilityTheory.meas_ge_le_evariance_div_sq
: Chebyshev's inequality formulated withevariance
without requiring the random variables to be L².ProbabilityTheory.IndepFun.variance_add
: the variance of the sum of two independent random variables is the sum of the variances.ProbabilityTheory.IndepFun.variance_sum
: the variance of a finite sum of pairwise independent random variables is the sum of the variances.
def
ProbabilityTheory.evariance
{Ω : Type u_1}
:
{x : MeasurableSpace Ω} → (Ω → ℝ) → MeasureTheory.Measure Ω → ENNReal
The ℝ≥0∞
-valued variance of a real-valued random variable defined as the Lebesgue integral of
(X - 𝔼[X])^2
.
Instances For
def
ProbabilityTheory.variance
{Ω : Type u_1}
:
{x : MeasurableSpace Ω} → (Ω → ℝ) → MeasureTheory.Measure Ω → ℝ
The ℝ
-valued variance of a real-valued random variable defined by applying ENNReal.toReal
to evariance
.
Equations
- ProbabilityTheory.variance X μ = (ProbabilityTheory.evariance X μ).toReal
Instances For
theorem
MeasureTheory.Memℒp.evariance_lt_top
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.Memℒp X 2 μ)
:
theorem
ProbabilityTheory.evariance_eq_top
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure μ]
(hXm : MeasureTheory.AEStronglyMeasurable X μ)
(hX : ¬MeasureTheory.Memℒp X 2 μ)
:
theorem
ProbabilityTheory.evariance_lt_top_iff_memℒp
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.AEStronglyMeasurable X μ)
:
ProbabilityTheory.evariance X μ < ⊤ ↔ MeasureTheory.Memℒp X 2 μ
theorem
MeasureTheory.Memℒp.ofReal_variance_eq
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.Memℒp X 2 μ)
:
theorem
ProbabilityTheory.evariance_eq_lintegral_ofReal
{Ω : Type u_1}
{m : MeasurableSpace Ω}
(X : Ω → ℝ)
(μ : MeasureTheory.Measure Ω)
:
ProbabilityTheory.evariance X μ = ∫⁻ (ω : Ω), ENNReal.ofReal ((X ω - ∫ (x : Ω), X x ∂μ) ^ 2) ∂μ
theorem
MeasureTheory.Memℒp.variance_eq_of_integral_eq_zero
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
(hX : MeasureTheory.Memℒp X 2 μ)
(hXint : ∫ (x : Ω), X x ∂μ = 0)
:
ProbabilityTheory.variance X μ = ∫ (x : Ω), (X ^ 2) x ∂μ
theorem
MeasureTheory.Memℒp.variance_eq
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.Memℒp X 2 μ)
:
ProbabilityTheory.variance X μ = ∫ (x : Ω), ((X - fun (x : Ω) => ∫ (x : Ω), X x ∂μ) ^ 2) x ∂μ
@[simp]
theorem
ProbabilityTheory.evariance_zero
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
:
ProbabilityTheory.evariance 0 μ = 0
theorem
ProbabilityTheory.evariance_eq_zero_iff
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
(hX : AEMeasurable X μ)
:
ProbabilityTheory.evariance X μ = 0 ↔ X =ᵐ[μ] fun (x : Ω) => ∫ (x : Ω), X x ∂μ
theorem
ProbabilityTheory.evariance_mul
{Ω : Type u_1}
{m : MeasurableSpace Ω}
(c : ℝ)
(X : Ω → ℝ)
(μ : MeasureTheory.Measure Ω)
:
ProbabilityTheory.evariance (fun (ω : Ω) => c * X ω) μ = ENNReal.ofReal (c ^ 2) * ProbabilityTheory.evariance X μ
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
ProbabilityTheory.variance_zero
{Ω : Type u_1}
{m : MeasurableSpace Ω}
(μ : MeasureTheory.Measure Ω)
:
ProbabilityTheory.variance 0 μ = 0
theorem
ProbabilityTheory.variance_nonneg
{Ω : Type u_1}
{m : MeasurableSpace Ω}
(X : Ω → ℝ)
(μ : MeasureTheory.Measure Ω)
:
0 ≤ ProbabilityTheory.variance X μ
theorem
ProbabilityTheory.variance_mul
{Ω : Type u_1}
{m : MeasurableSpace Ω}
(c : ℝ)
(X : Ω → ℝ)
(μ : MeasureTheory.Measure Ω)
:
ProbabilityTheory.variance (fun (ω : Ω) => c * X ω) μ = c ^ 2 * ProbabilityTheory.variance X μ
theorem
ProbabilityTheory.variance_smul
{Ω : Type u_1}
{m : MeasurableSpace Ω}
(c : ℝ)
(X : Ω → ℝ)
(μ : MeasureTheory.Measure Ω)
:
ProbabilityTheory.variance (c • X) μ = c ^ 2 * ProbabilityTheory.variance X μ
theorem
ProbabilityTheory.variance_smul'
{Ω : Type u_1}
{m : MeasurableSpace Ω}
{A : Type u_2}
[CommSemiring A]
[Algebra A ℝ]
(c : A)
(X : Ω → ℝ)
(μ : MeasureTheory.Measure Ω)
:
ProbabilityTheory.variance (c • X) μ = c ^ 2 • ProbabilityTheory.variance X μ
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
ProbabilityTheory.variance_def'
{Ω : Type u_1}
[MeasureTheory.MeasureSpace Ω]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
{X : Ω → ℝ}
(hX : MeasureTheory.Memℒp X 2 MeasureTheory.volume)
:
ProbabilityTheory.variance X MeasureTheory.volume = (∫ (a : Ω), (X ^ 2) a) - (∫ (a : Ω), X a) ^ 2
theorem
ProbabilityTheory.variance_le_expectation_sq
{Ω : Type u_1}
[MeasureTheory.MeasureSpace Ω]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
{X : Ω → ℝ}
(hm : MeasureTheory.AEStronglyMeasurable X MeasureTheory.volume)
:
ProbabilityTheory.variance X MeasureTheory.volume ≤ ∫ (a : Ω), (X ^ 2) a
theorem
ProbabilityTheory.evariance_def'
{Ω : Type u_1}
[MeasureTheory.MeasureSpace Ω]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
{X : Ω → ℝ}
(hX : MeasureTheory.AEStronglyMeasurable X MeasureTheory.volume)
:
ProbabilityTheory.evariance X MeasureTheory.volume = (∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2)) - ENNReal.ofReal ((∫ (a : Ω), X a) ^ 2)
theorem
ProbabilityTheory.meas_ge_le_evariance_div_sq
{Ω : Type u_1}
[MeasureTheory.MeasureSpace Ω]
{X : Ω → ℝ}
(hX : MeasureTheory.AEStronglyMeasurable X MeasureTheory.volume)
{c : NNReal}
(hc : c ≠ 0)
:
Chebyshev's inequality for ℝ≥0∞
-valued variance.
theorem
ProbabilityTheory.meas_ge_le_variance_div_sq
{Ω : Type u_1}
[MeasureTheory.MeasureSpace Ω]
[MeasureTheory.IsFiniteMeasure MeasureTheory.volume]
{X : Ω → ℝ}
(hX : MeasureTheory.Memℒp X 2 MeasureTheory.volume)
{c : ℝ}
(hc : 0 < c)
:
MeasureTheory.volume {ω : Ω | c ≤ |X ω - ∫ (a : Ω), X a|} ≤ ENNReal.ofReal (ProbabilityTheory.variance X MeasureTheory.volume / c ^ 2)
Chebyshev's inequality: one can control the deviation probability of a real random variable from its expectation in terms of the variance.
theorem
ProbabilityTheory.IndepFun.variance_add
{Ω : Type u_1}
[MeasureTheory.MeasureSpace Ω]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
{X : Ω → ℝ}
{Y : Ω → ℝ}
(hX : MeasureTheory.Memℒp X 2 MeasureTheory.volume)
(hY : MeasureTheory.Memℒp Y 2 MeasureTheory.volume)
(h : ProbabilityTheory.IndepFun X Y MeasureTheory.volume)
:
ProbabilityTheory.variance (X + Y) MeasureTheory.volume = ProbabilityTheory.variance X MeasureTheory.volume + ProbabilityTheory.variance Y MeasureTheory.volume
The variance of the sum of two independent random variables is the sum of the variances.
theorem
ProbabilityTheory.IndepFun.variance_sum
{Ω : Type u_1}
[MeasureTheory.MeasureSpace Ω]
[MeasureTheory.IsProbabilityMeasure MeasureTheory.volume]
{ι : Type u_2}
{X : ι → Ω → ℝ}
{s : Finset ι}
(hs : ∀ i ∈ s, MeasureTheory.Memℒp (X i) 2 MeasureTheory.volume)
(h : (↑s).Pairwise fun (i j : ι) => ProbabilityTheory.IndepFun (X i) (X j) MeasureTheory.volume)
:
ProbabilityTheory.variance (∑ i ∈ s, X i) MeasureTheory.volume = ∑ i ∈ s, ProbabilityTheory.variance (X i) MeasureTheory.volume
The variance of a finite sum of pairwise independent random variables is the sum of the variances.