Documentation

Mathlib.NumberTheory.Ostrowski

Ostrowski’s Theorem #

The goal of this file is to prove Ostrowski’s Theorem which gives a list of all the nontrivial absolute values on a number field up to equivalence. (TODO)

References #

Tags #

ring_norm, ostrowski

theorem Rat.MulRingNorm.eq_on_nat_iff_eq_on_Int {f : MulRingNorm } {g : MulRingNorm } :
(∀ (n : ), f n = g n) ∀ (n : ), f n = g n

Values of a multiplicative norm of the rationals coincide on ℕ if and only if they coincide on .

theorem Rat.MulRingNorm.eq_on_nat_iff_eq {f : MulRingNorm } {g : MulRingNorm } :
(∀ (n : ), f n = g n) f = g

Values of a multiplicative norm of the rationals are determined by the values on the natural numbers.

theorem Rat.MulRingNorm.equiv_on_nat_iff_equiv {f : MulRingNorm } {g : MulRingNorm } :
(∃ (c : ), 0 < c ∀ (n : ), f n ^ c = g n) f.equiv g

The equivalence class of a multiplicative norm on the rationals is determined by its values on the natural numbers.

The mulRingNorm corresponding to the p-adic norm on .

Equations
Instances For
    theorem Rat.MulRingNorm.exists_minimal_nat_zero_lt_mulRingNorm_lt_one {f : MulRingNorm } (hf_nontriv : f 1) (bdd : ∀ (n : ), f n 1) :
    ∃ (p : ), (0 < f p f p < 1) ∀ (m : ), 0 < f m f m < 1p m

    There exists a minimal positive integer with absolute value smaller than 1.

    theorem Rat.MulRingNorm.is_prime_of_minimal_nat_zero_lt_mulRingNorm_lt_one {f : MulRingNorm } {p : } (hp0 : 0 < f p) (hp1 : f p < 1) (hmin : ∀ (m : ), 0 < f m f m < 1p m) :

    The minimal positive integer with absolute value smaller than 1 is a prime number.

    theorem Rat.MulRingNorm.mulRingNorm_eq_one_of_not_dvd {f : MulRingNorm } (bdd : ∀ (n : ), f n 1) {p : } (hp0 : 0 < f p) (hp1 : f p < 1) (hmin : ∀ (m : ), 0 < f m f m < 1p m) {m : } (hpm : ¬p m) :
    f m = 1

    A natural number not divible by p has absolute value 1.

    theorem Rat.MulRingNorm.exists_pos_mulRingNorm_eq_pow_neg {f : MulRingNorm } {p : } (hp0 : 0 < f p) (hp1 : f p < 1) (hmin : ∀ (m : ), 0 < f m f m < 1p m) :
    ∃ (t : ), 0 < t f p = p ^ (-t)

    The absolute value of p is p ^ (-t) for some positive real number t.

    theorem Rat.MulRingNorm.mulRingNorm_equiv_padic_of_bounded {f : MulRingNorm } (hf_nontriv : f 1) (bdd : ∀ (n : ), f n 1) :
    ∃! p : , ∃ (hp : Fact (Nat.Prime p)), f.equiv (Rat.MulRingNorm.mulRingNorm_padic p)

    If f is bounded and not trivial, then it is equivalent to a p-adic absolute value.