# Derivative of Γ at positive integers
We prove the formula for the derivative of Real.Gamma
at a positive integer:
deriv Real.Gamma (n + 1) = Nat.factorial n * (-Real.eulerMascheroniConstant + harmonic n)
theorem
Real.deriv_Gamma_nat
(n : ℕ)
:
deriv Real.Gamma (↑n + 1) = ↑n.factorial * (-Real.eulerMascheroniConstant + ↑(harmonic n))
Explicit formula for the derivative of the Gamma function at positive integers, in terms of
harmonic numbers and the Euler-Mascheroni constant γ
.
theorem
Real.hasDerivAt_Gamma_nat
(n : ℕ)
:
HasDerivAt Real.Gamma (↑n.factorial * (-Real.eulerMascheroniConstant + ↑(harmonic n))) (↑n + 1)
theorem
Real.hasDerivAt_Gamma_one_half :
HasDerivAt Real.Gamma (-√Real.pi * (Real.eulerMascheroniConstant + 2 * Real.log 2)) (1 / 2)
theorem
Complex.differentiable_at_Gamma_nat_add_one
(n : ℕ)
:
DifferentiableAt ℂ Complex.Gamma (↑n + 1)
theorem
Complex.hasDerivAt_Gamma_nat
(n : ℕ)
:
HasDerivAt Complex.Gamma (↑n.factorial * (-↑Real.eulerMascheroniConstant + ↑(harmonic n))) (↑n + 1)
theorem
Complex.deriv_Gamma_nat
(n : ℕ)
:
deriv Complex.Gamma (↑n + 1) = ↑n.factorial * (-↑Real.eulerMascheroniConstant + ↑(harmonic n))
Explicit formula for the derivative of the complex Gamma function at positive integers, in
terms of harmonic numbers and the Euler-Mascheroni constant γ
.
theorem
Complex.hasDerivAt_Gamma_one_half :
HasDerivAt Complex.Gamma (-↑√Real.pi * (↑Real.eulerMascheroniConstant + 2 * Complex.log 2)) (1 / 2)
theorem
Complex.hasDerivAt_Gammaℂ_one :
HasDerivAt Complex.Gammaℂ (-(↑Real.eulerMascheroniConstant + Complex.log (2 * ↑Real.pi)) / ↑Real.pi) 1
theorem
Complex.hasDerivAt_Gammaℝ_one :
HasDerivAt Complex.Gammaℝ (-(↑Real.eulerMascheroniConstant + Complex.log (4 * ↑Real.pi)) / 2) 1