Statement of Fermat's Last Theorem #
This file states Fermat's Last Theorem. We provide a statement over a general semiring with specific exponent, along with the usual statement over the naturals.
Statement of Fermat's Last Theorem over the naturals for a given exponent.
Equations
Instances For
Statement of Fermat's Last Theorem: a ^ n + b ^ n = c ^ n
has no nontrivial natural solution
when n ≥ 3
.
Equations
- FermatLastTheorem = ∀ n ≥ 3, FermatLastTheoremFor n
Instances For
theorem
FermatLastTheoremWith.mono
{α : Type u_1}
[Semiring α]
[NoZeroDivisors α]
{m : ℕ}
{n : ℕ}
(hmn : m ∣ n)
(hm : FermatLastTheoremWith α m)
:
theorem
fermatLastTheoremWith_nat_int_rat_tfae
(n : ℕ)
:
[FermatLastTheoremWith ℕ n, FermatLastTheoremWith ℤ n, FermatLastTheoremWith ℚ n].TFAE
theorem
fermatLastTheoremWith_of_fermatLastTheoremWith_coprime
{n : ℕ}
{R : Type u_2}
[CommSemiring R]
[IsDomain R]
[DecidableEq R]
[NormalizedGCDMonoid R]
(hn : ∀ (a b c : R), a ≠ 0 → b ≠ 0 → c ≠ 0 → {a, b, c}.gcd id = 1 → a ^ n + b ^ n ≠ c ^ n)
:
To prove Fermat Last Theorem in any semiring that is a NormalizedGCDMonoid
one can assume
that the gcd
of {a, b, c}
is 1
.