Cyclotomic extensions of ℚ
are totally complex number fields. #
We prove that cyclotomic extensions of ℚ
are totally complex, meaning that
NrRealPlaces K = 0
if IsCyclotomicExtension {n} ℚ K
and 2 < n
.
Main results #
nrRealPlaces_eq_zero
: IfK
is an
-th cyclotomic extension ofℚ
, where2 < n
, then there are no real places ofK
.
theorem
IsCyclotomicExtension.Rat.nrRealPlaces_eq_zero
{n : ℕ+}
(K : Type u)
[Field K]
[CharZero K]
[IsCyclotomicExtension {n} ℚ K]
(hn : 2 < n)
:
If K
is a n
-th cyclotomic extension of ℚ
, where 2 < n
, then there are no real places
of K
.
theorem
IsCyclotomicExtension.Rat.nrComplexPlaces_eq_totient_div_two
(n : ℕ+)
(K : Type u)
[Field K]
[CharZero K]
[h : IsCyclotomicExtension {n} ℚ K]
:
NumberField.InfinitePlace.NrComplexPlaces K = (↑n).totient / 2
If K
is a n
-th cyclotomic extension of ℚ
, then there are φ n / n
complex places
of K
. Note that this uses 1 / 2 = 0
in the cases n = 1, 2
.