Action of Mᵈᵐᵃ
on Lᵖ
spaces #
In this file we define action of Mᵈᵐᵃ
on MeasureTheory.Lp E p μ
If f : α → E
is a function representing an equivalence class in Lᵖ(α, E)
, M
acts on α
,
and c : M
, then (.mk c : Mᵈᵐᵃ) • [f]
is represented by the function a ↦ f (c • a)
.
We also prove basic properties of this action.
theorem
DomAddAct.instVAddSubtypeAEEqFunMemAddAddSubgroupLp.proof_1
{E : Type u_1}
[NormedAddCommGroup E]
:
instance
DomAddAct.instVAddSubtypeAEEqFunMemAddAddSubgroupLp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
:
VAdd Mᵈᵃᵃ ↥(MeasureTheory.Lp E p μ)
Equations
- One or more equations did not get rendered due to their size.
theorem
DomAddAct.instVAddSubtypeAEEqFunMemAddAddSubgroupLp.proof_2
{M : Type u_2}
{α : Type u_1}
[MeasurableSpace M]
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : Mᵈᵃᵃ)
:
MeasureTheory.MeasurePreserving (fun (x : α) => DomAddAct.mk.symm c +ᵥ x) μ μ
instance
DomMulAct.instSMulSubtypeAEEqFunMemAddSubgroupLp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
:
SMul Mᵈᵐᵃ ↥(MeasureTheory.Lp E p μ)
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
DomAddAct.vadd_Lp_val
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : Mᵈᵃᵃ)
(f : ↥(MeasureTheory.Lp E p μ))
:
@[simp]
theorem
DomMulAct.smul_Lp_val
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : Mᵈᵐᵃ)
(f : ↥(MeasureTheory.Lp E p μ))
:
theorem
DomAddAct.vadd_Lp_ae_eq
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : Mᵈᵃᵃ)
(f : ↥(MeasureTheory.Lp E p μ))
:
theorem
DomMulAct.smul_Lp_ae_eq
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : Mᵈᵐᵃ)
(f : ↥(MeasureTheory.Lp E p μ))
:
theorem
DomAddAct.mk_vadd_toLp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : M)
{f : α → E}
(hf : MeasureTheory.Memℒp f p μ)
:
DomAddAct.mk c +ᵥ MeasureTheory.Memℒp.toLp f hf = MeasureTheory.Memℒp.toLp (fun (x : α) => f (c +ᵥ x)) ⋯
theorem
DomMulAct.mk_smul_toLp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : M)
{f : α → E}
(hf : MeasureTheory.Memℒp f p μ)
:
DomMulAct.mk c • MeasureTheory.Memℒp.toLp f hf = MeasureTheory.Memℒp.toLp (fun (x : α) => f (c • x)) ⋯
@[simp]
theorem
DomAddAct.vadd_Lp_const
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
[MeasureTheory.IsFiniteMeasure μ]
(c : Mᵈᵃᵃ)
(a : E)
:
c +ᵥ (MeasureTheory.Lp.const p μ) a = (MeasureTheory.Lp.const p μ) a
@[simp]
theorem
DomMulAct.smul_Lp_const
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
[MeasureTheory.IsFiniteMeasure μ]
(c : Mᵈᵐᵃ)
(a : E)
:
c • (MeasureTheory.Lp.const p μ) a = (MeasureTheory.Lp.const p μ) a
theorem
DomAddAct.mk_vadd_indicatorConstLp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : M)
{s : Set α}
(hs : MeasurableSet s)
(hμs : μ s ≠ ⊤)
(b : E)
:
DomAddAct.mk c +ᵥ MeasureTheory.indicatorConstLp p hs hμs b = MeasureTheory.indicatorConstLp p ⋯ ⋯ b
theorem
DomMulAct.mk_smul_indicatorConstLp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : M)
{s : Set α}
(hs : MeasurableSet s)
(hμs : μ s ≠ ⊤)
(b : E)
:
DomMulAct.mk c • MeasureTheory.indicatorConstLp p hs hμs b = MeasureTheory.indicatorConstLp p ⋯ ⋯ b
instance
DomMulAct.instSMulCommClassSubtypeAEEqFunMemAddSubgroupLp
{M : Type u_1}
{N : Type u_2}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace N]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
[SMul N α]
[SMulCommClass M N α]
[MeasureTheory.SMulInvariantMeasure N α μ]
[MeasurableSMul N α]
:
SMulCommClass Mᵈᵐᵃ Nᵈᵐᵃ ↥(MeasureTheory.Lp E p μ)
Equations
- ⋯ = ⋯
instance
DomMulAct.instSMulCommClassSubtypeAEEqFunMemAddSubgroupLp_1
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
{𝕜 : Type u_5}
[NormedRing 𝕜]
[Module 𝕜 E]
[BoundedSMul 𝕜 E]
:
SMulCommClass Mᵈᵐᵃ 𝕜 ↥(MeasureTheory.Lp E p μ)
Equations
- ⋯ = ⋯
instance
DomMulAct.instSMulCommClassSubtypeAEEqFunMemAddSubgroupLp_2
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
{𝕜 : Type u_5}
[NormedRing 𝕜]
[Module 𝕜 E]
[BoundedSMul 𝕜 E]
:
SMulCommClass 𝕜 Mᵈᵐᵃ ↥(MeasureTheory.Lp E p μ)
Equations
- ⋯ = ⋯
@[simp]
theorem
DomAddAct.vadd_Lp_add
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : Mᵈᵃᵃ)
(f : ↥(MeasureTheory.Lp E p μ))
(g : ↥(MeasureTheory.Lp E p μ))
:
theorem
DomMulAct.smul_Lp_add
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : Mᵈᵐᵃ)
(f : ↥(MeasureTheory.Lp E p μ))
(g : ↥(MeasureTheory.Lp E p μ))
:
@[simp]
theorem
DomAddAct.vadd_Lp_zero
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : Mᵈᵃᵃ)
:
@[simp]
theorem
DomMulAct.smul_Lp_zero
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : Mᵈᵐᵃ)
:
theorem
DomAddAct.vadd_Lp_neg
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : Mᵈᵃᵃ)
(f : ↥(MeasureTheory.Lp E p μ))
:
theorem
DomMulAct.smul_Lp_neg
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : Mᵈᵐᵃ)
(f : ↥(MeasureTheory.Lp E p μ))
:
theorem
DomAddAct.vadd_Lp_sub
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : Mᵈᵃᵃ)
(f : ↥(MeasureTheory.Lp E p μ))
(g : ↥(MeasureTheory.Lp E p μ))
:
theorem
DomMulAct.smul_Lp_sub
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : Mᵈᵐᵃ)
(f : ↥(MeasureTheory.Lp E p μ))
(g : ↥(MeasureTheory.Lp E p μ))
:
instance
DomMulAct.instDistribSMulSubtypeAEEqFunMemAddSubgroupLp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
:
DistribSMul Mᵈᵐᵃ ↥(MeasureTheory.Lp E p μ)
Equations
- DomMulAct.instDistribSMulSubtypeAEEqFunMemAddSubgroupLp = DistribSMul.mk ⋯
@[simp]
theorem
DomAddAct.norm_vadd_Lp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : Mᵈᵃᵃ)
(f : ↥(MeasureTheory.Lp E p μ))
:
@[simp]
theorem
DomMulAct.norm_smul_Lp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : Mᵈᵐᵃ)
(f : ↥(MeasureTheory.Lp E p μ))
:
@[simp]
theorem
DomAddAct.nnnorm_vadd_Lp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : Mᵈᵃᵃ)
(f : ↥(MeasureTheory.Lp E p μ))
:
@[simp]
theorem
DomMulAct.nnnorm_smul_Lp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : Mᵈᵐᵃ)
(f : ↥(MeasureTheory.Lp E p μ))
:
@[simp]
theorem
DomAddAct.dist_vadd_Lp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : Mᵈᵃᵃ)
(f : ↥(MeasureTheory.Lp E p μ))
(g : ↥(MeasureTheory.Lp E p μ))
:
@[simp]
theorem
DomMulAct.dist_smul_Lp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : Mᵈᵐᵃ)
(f : ↥(MeasureTheory.Lp E p μ))
(g : ↥(MeasureTheory.Lp E p μ))
:
@[simp]
theorem
DomAddAct.edist_vadd_Lp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
(c : Mᵈᵃᵃ)
(f : ↥(MeasureTheory.Lp E p μ))
(g : ↥(MeasureTheory.Lp E p μ))
:
@[simp]
theorem
DomMulAct.edist_smul_Lp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
(c : Mᵈᵐᵃ)
(f : ↥(MeasureTheory.Lp E p μ))
(g : ↥(MeasureTheory.Lp E p μ))
:
instance
DomAddAct.instIsometricVAddSubtypeAEEqFunMemAddAddSubgroupLp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[VAdd M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
[Fact (1 ≤ p)]
:
IsometricVAdd Mᵈᵃᵃ ↥(MeasureTheory.Lp E p μ)
Equations
- ⋯ = ⋯
instance
DomMulAct.instIsometricSMulSubtypeAEEqFunMemAddSubgroupLp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[SMul M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
[Fact (1 ≤ p)]
:
IsometricSMul Mᵈᵐᵃ ↥(MeasureTheory.Lp E p μ)
Equations
- ⋯ = ⋯
theorem
DomAddAct.instAddActionSubtypeAEEqFunMemAddAddSubgroupLp.proof_3
{M : Type u_1}
{α : Type u_2}
{E : Type u_3}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[AddMonoid M]
[AddAction M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
:
∀ (x : Mᵈᵃᵃ) (x_1 : ↥(MeasureTheory.Lp E p μ)), ↑(x +ᵥ x_1) = ↑(x +ᵥ x_1)
theorem
DomAddAct.instAddActionSubtypeAEEqFunMemAddAddSubgroupLp.proof_1
{E : Type u_1}
[NormedAddCommGroup E]
:
instance
DomAddAct.instAddActionSubtypeAEEqFunMemAddAddSubgroupLp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[AddMonoid M]
[AddAction M α]
[MeasureTheory.VAddInvariantMeasure M α μ]
[MeasurableVAdd M α]
:
AddAction Mᵈᵃᵃ ↥(MeasureTheory.Lp E p μ)
Equations
- DomAddAct.instAddActionSubtypeAEEqFunMemAddAddSubgroupLp = Function.Injective.addAction Subtype.val ⋯ ⋯
theorem
DomAddAct.instAddActionSubtypeAEEqFunMemAddAddSubgroupLp.proof_2
{α : Type u_1}
{E : Type u_2}
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
:
Function.Injective Subtype.val
instance
DomMulAct.instMulActionSubtypeAEEqFunMemAddSubgroupLp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[Monoid M]
[MulAction M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
:
MulAction Mᵈᵐᵃ ↥(MeasureTheory.Lp E p μ)
Equations
- DomMulAct.instMulActionSubtypeAEEqFunMemAddSubgroupLp = Function.Injective.mulAction Subtype.val ⋯ ⋯
instance
DomMulAct.instDistribMulActionSubtypeAEEqFunMemAddSubgroupLp
{M : Type u_1}
{α : Type u_3}
{E : Type u_4}
[MeasurableSpace M]
[MeasurableSpace α]
[NormedAddCommGroup E]
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[Monoid M]
[MulAction M α]
[MeasureTheory.SMulInvariantMeasure M α μ]
[MeasurableSMul M α]
:
DistribMulAction Mᵈᵐᵃ ↥(MeasureTheory.Lp E p μ)
Equations
- One or more equations did not get rendered due to their size.