Equations
- instZeroShrink = (equivShrink α).symm.zero
Equations
- instOneShrink = (equivShrink α).symm.one
@[simp]
theorem
equivShrink_symm_zero
{α : Type u_1}
[Zero α]
[Small.{u_2, u_1} α]
:
(equivShrink α).symm 0 = 0
@[simp]
theorem
equivShrink_symm_one
{α : Type u_1}
[One α]
[Small.{u_2, u_1} α]
:
(equivShrink α).symm 1 = 1
Equations
- instAddShrink = (equivShrink α).symm.add
Equations
- instMulShrink = (equivShrink α).symm.mul
@[simp]
theorem
equivShrink_symm_add
{α : Type u_1}
[Add α]
[Small.{u_2, u_1} α]
(x : Shrink.{u_2, u_1} α)
(y : Shrink.{u_2, u_1} α)
:
(equivShrink α).symm (x + y) = (equivShrink α).symm x + (equivShrink α).symm y
@[simp]
theorem
equivShrink_add
{α : Type u_1}
[Add α]
[Small.{u_2, u_1} α]
(x : α)
(y : α)
:
(equivShrink α) (x + y) = (equivShrink α) x + (equivShrink α) y
@[simp]
theorem
equivShrink_symm_mul
{α : Type u_1}
[Mul α]
[Small.{u_2, u_1} α]
(x : Shrink.{u_2, u_1} α)
(y : Shrink.{u_2, u_1} α)
:
(equivShrink α).symm (x * y) = (equivShrink α).symm x * (equivShrink α).symm y
@[simp]
theorem
equivShrink_mul
{α : Type u_1}
[Mul α]
[Small.{u_2, u_1} α]
(x : α)
(y : α)
:
(equivShrink α) (x * y) = (equivShrink α) x * (equivShrink α) y
Equations
- instSubShrink = (equivShrink α).symm.sub
Equations
- instDivShrink = (equivShrink α).symm.div
@[simp]
theorem
equivShrink_symm_sub
{α : Type u_1}
[Sub α]
[Small.{u_2, u_1} α]
(x : Shrink.{u_2, u_1} α)
(y : Shrink.{u_2, u_1} α)
:
(equivShrink α).symm (x - y) = (equivShrink α).symm x - (equivShrink α).symm y
@[simp]
theorem
equivShrink_sub
{α : Type u_1}
[Sub α]
[Small.{u_2, u_1} α]
(x : α)
(y : α)
:
(equivShrink α) (x - y) = (equivShrink α) x - (equivShrink α) y
@[simp]
theorem
equivShrink_symm_div
{α : Type u_1}
[Div α]
[Small.{u_2, u_1} α]
(x : Shrink.{u_2, u_1} α)
(y : Shrink.{u_2, u_1} α)
:
(equivShrink α).symm (x / y) = (equivShrink α).symm x / (equivShrink α).symm y
@[simp]
theorem
equivShrink_div
{α : Type u_1}
[Div α]
[Small.{u_2, u_1} α]
(x : α)
(y : α)
:
(equivShrink α) (x / y) = (equivShrink α) x / (equivShrink α) y
Equations
- instNegShrink = (equivShrink α).symm.Neg
Equations
- instInvShrink = (equivShrink α).symm.Inv
@[simp]
theorem
equivShrink_symm_neg
{α : Type u_1}
[Neg α]
[Small.{u_2, u_1} α]
(x : Shrink.{u_2, u_1} α)
:
(equivShrink α).symm (-x) = -(equivShrink α).symm x
@[simp]
theorem
equivShrink_neg
{α : Type u_1}
[Neg α]
[Small.{u_2, u_1} α]
(x : α)
:
(equivShrink α) (-x) = -(equivShrink α) x
@[simp]
theorem
equivShrink_symm_inv
{α : Type u_1}
[Inv α]
[Small.{u_2, u_1} α]
(x : Shrink.{u_2, u_1} α)
:
(equivShrink α).symm x⁻¹ = ((equivShrink α).symm x)⁻¹
@[simp]
theorem
equivShrink_inv
{α : Type u_1}
[Inv α]
[Small.{u_2, u_1} α]
(x : α)
:
(equivShrink α) x⁻¹ = ((equivShrink α) x)⁻¹
Equations
- instAddSemigroupShrink = (equivShrink α).symm.addSemigroup
Equations
- instSemigroupShrink = (equivShrink α).symm.semigroup
Equations
- instSemigroupWithZeroShrink = (equivShrink α).symm.semigroupWithZero
Equations
- instAddCommSemigroupShrink = (equivShrink α).symm.addCommSemigroup
Equations
- instCommSemigroupShrink = (equivShrink α).symm.commSemigroup
Equations
- instMulZeroClassShrink = (equivShrink α).symm.mulZeroClass
Equations
- instAddZeroClassShrink = (equivShrink α).symm.addZeroClass
Equations
- instMulOneClassShrink = (equivShrink α).symm.mulOneClass
Equations
- instMulZeroOneClassShrink = (equivShrink α).symm.mulZeroOneClass
Equations
- instAddMonoidShrink = (equivShrink α).symm.addMonoid
Equations
- instMonoidShrink = (equivShrink α).symm.monoid
Equations
- instAddCommMonoidShrink = (equivShrink α).symm.addCommMonoid
Equations
- instCommMonoidShrink = (equivShrink α).symm.commMonoid
Equations
- instAddGroupShrink = (equivShrink α).symm.addGroup
Equations
- instGroupShrink = (equivShrink α).symm.group
Equations
- instAddCommGroupShrink = (equivShrink α).symm.addCommGroup
Equations
- instCommGroupShrink = (equivShrink α).symm.commGroup