Eigenspaces of semisimple linear endomorphisms #
This file contains basic results relevant to the study of eigenspaces of semisimple linear endomorphisms.
Main definitions / results #
Module.End.IsSemisimple.genEigenspace_eq_eigenspace
: for a semisimple endomorphism, a generalized eigenspace is an eigenspace.
theorem
Module.End.apply_eq_of_mem_genEigenspace_of_comm_of_isSemisimple_of_isNilpotent_sub
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
{f : Module.End R M}
{g : Module.End R M}
{μ : R}
{k : ℕ}
{m : M}
(hm : m ∈ (f.genEigenspace μ) k)
(hfg : Commute f g)
(hss : g.IsSemisimple)
(hnil : IsNilpotent (f - g))
:
theorem
Module.End.IsSemisimple.genEigenspace_eq_eigenspace
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
{f : Module.End R M}
(hf : f.IsSemisimple)
(μ : R)
{k : ℕ}
(hk : 0 < k)
:
(f.genEigenspace μ) k = f.eigenspace μ
theorem
Module.End.IsSemisimple.maxGenEigenspace_eq_eigenspace
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
{f : Module.End R M}
(hf : f.IsSemisimple)
(μ : R)
:
f.maxGenEigenspace μ = f.eigenspace μ