p-groups #
This file contains a proof that if G
is a p
-group acting on a finite set α
,
then the number of fixed points of the action is congruent mod p
to the cardinality of α
.
It also contains proofs of some corollaries of this lemma about existence of fixed points.
noncomputable def
IsPGroup.powEquiv
{p : ℕ}
{G : Type u_1}
[Group G]
(hG : IsPGroup p G)
{n : ℕ}
(hn : p.Coprime n)
:
G ≃ G
If gcd(p,n) = 1
, then the n
th power map is a bijection.
Equations
- hG.powEquiv hn = let h := ⋯; { toFun := fun (x : G) => x ^ n, invFun := fun (g : G) => ↑((powCoprime ⋯).symm ⟨g, ⋯⟩), left_inv := ⋯, right_inv := ⋯ }
Instances For
theorem
IsPGroup.nonempty_fixed_point_of_prime_not_dvd_card
{p : ℕ}
{G : Type u_1}
[Group G]
(hG : IsPGroup p G)
[hp : Fact (Nat.Prime p)]
(α : Type u_2)
[MulAction G α]
(hpα : ¬p ∣ Nat.card α)
:
(MulAction.fixedPoints G α).Nonempty
If a p-group acts on α
and the cardinality of α
is not a multiple
of p
then the action has a fixed point.
theorem
IsPGroup.exists_fixed_point_of_prime_dvd_card_of_fixed_point
{p : ℕ}
{G : Type u_1}
[Group G]
(hG : IsPGroup p G)
[hp : Fact (Nat.Prime p)]
(α : Type u_2)
[MulAction G α]
[Finite α]
(hpα : p ∣ Nat.card α)
{a : α}
(ha : a ∈ MulAction.fixedPoints G α)
:
∃ b ∈ MulAction.fixedPoints G α, a ≠ b
If a p-group acts on α
and the cardinality of α
is a multiple
of p
, and the action has one fixed point, then it has another fixed point.
theorem
IsPGroup.center_nontrivial
{p : ℕ}
{G : Type u_1}
[Group G]
(hG : IsPGroup p G)
[hp : Fact (Nat.Prime p)]
[Nontrivial G]
[Finite G]
:
theorem
IsPGroup.bot_lt_center
{p : ℕ}
{G : Type u_1}
[Group G]
(hG : IsPGroup p G)
[hp : Fact (Nat.Prime p)]
[Nontrivial G]
[Finite G]
:
theorem
IsPGroup.ker_isPGroup_of_injective
{p : ℕ}
{G : Type u_1}
[Group G]
{K : Type u_2}
[Group K]
{ϕ : K →* G}
(hϕ : Function.Injective ⇑ϕ)
:
IsPGroup p ↥ϕ.ker
theorem
IsPGroup.comap_of_injective
{p : ℕ}
{G : Type u_1}
[Group G]
{H : Subgroup G}
(hH : IsPGroup p ↥H)
{K : Type u_2}
[Group K]
(ϕ : K →* G)
(hϕ : Function.Injective ⇑ϕ)
:
IsPGroup p ↥(Subgroup.comap ϕ H)
theorem
IsPGroup.comap_subtype
{p : ℕ}
{G : Type u_1}
[Group G]
{H : Subgroup G}
(hH : IsPGroup p ↥H)
{K : Subgroup G}
:
IsPGroup p ↥(Subgroup.comap K.subtype H)
theorem
IsPGroup.coprime_card_of_ne
{G : Type u_1}
[Group G]
{G₂ : Type u_2}
[Group G₂]
(p₁ : ℕ)
(p₂ : ℕ)
[hp₁ : Fact (Nat.Prime p₁)]
[hp₂ : Fact (Nat.Prime p₂)]
(hne : p₁ ≠ p₂)
(H₁ : Subgroup G)
(H₂ : Subgroup G₂)
[Finite ↥H₁]
[Finite ↥H₂]
(hH₁ : IsPGroup p₁ ↥H₁)
(hH₂ : IsPGroup p₂ ↥H₂)
:
finite p-groups with different p have coprime orders
def
IsPGroup.commGroupOfCardEqPrimeSq
{p : ℕ}
{G : Type u_1}
[Group G]
[Fact (Nat.Prime p)]
(hG : Nat.card G = p ^ 2)
:
A group of order p ^ 2
is commutative. See also IsPGroup.commutative_of_card_eq_prime_sq
for just the proof that ∀ a b, a * b = b * a