Results about minpoly R x / (X - C x)
#
Main definition #
minpolyDiv
: The polynomialminpoly R x / (X - C x)
.
We used the contents of this file to describe the dual basis of a powerbasis under the trace form.
See traceForm_dualBasis_powerBasis_eq
.
Main results #
span_coeff_minpolyDiv
: The coefficients ofminpolyDiv
spansR<x>
.
noncomputable def
minpolyDiv
(R : Type u_1)
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
(x : S)
:
minpolyDiv R x : S[X]
for x : S
is the polynomial minpoly R x / (X - C x)
.
Equations
- minpolyDiv R x = Polynomial.map (algebraMap R S) (minpoly R x) /ₘ (Polynomial.X - Polynomial.C x)
Instances For
theorem
minpolyDiv_spec
(R : Type u_2)
{S : Type u_1}
[CommRing R]
[CommRing S]
[Algebra R S]
(x : S)
:
minpolyDiv R x * (Polynomial.X - Polynomial.C x) = Polynomial.map (algebraMap R S) (minpoly R x)
theorem
coeff_minpolyDiv
(R : Type u_2)
{S : Type u_1}
[CommRing R]
[CommRing S]
[Algebra R S]
(x : S)
(i : ℕ)
:
(minpolyDiv R x).coeff i = (algebraMap R S) ((minpoly R x).coeff (i + 1)) + (minpolyDiv R x).coeff (i + 1) * x
theorem
minpolyDiv_ne_zero
{R : Type u_2}
{S : Type u_1}
[CommRing R]
[CommRing S]
[Algebra R S]
{x : S}
(hx : IsIntegral R x)
[Nontrivial S]
:
minpolyDiv R x ≠ 0
theorem
minpolyDiv_eq_zero
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{x : S}
(hx : ¬IsIntegral R x)
:
minpolyDiv R x = 0
theorem
minpolyDiv_monic
{R : Type u_2}
{S : Type u_1}
[CommRing R]
[CommRing S]
[Algebra R S]
{x : S}
(hx : IsIntegral R x)
:
(minpolyDiv R x).Monic
theorem
eval_minpolyDiv_self
{R : Type u_2}
{S : Type u_1}
[CommRing R]
[CommRing S]
[Algebra R S]
{x : S}
:
Polynomial.eval x (minpolyDiv R x) = (Polynomial.aeval x) (Polynomial.derivative (minpoly R x))
theorem
minpolyDiv_eval_eq_zero_of_ne_of_aeval_eq_zero
{R : Type u_2}
{S : Type u_1}
[CommRing R]
[CommRing S]
[Algebra R S]
{x : S}
[IsDomain S]
{y : S}
(hxy : y ≠ x)
(hy : (Polynomial.aeval y) (minpoly R x) = 0)
:
Polynomial.eval y (minpolyDiv R x) = 0
theorem
eval₂_minpolyDiv_of_eval₂_eq_zero
{R : Type u_3}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{T : Type u_1}
[CommRing T]
[IsDomain T]
[DecidableEq T]
{x : S}
{y : T}
(σ : S →+* T)
(hy : Polynomial.eval₂ (σ.comp (algebraMap R S)) y (minpoly R x) = 0)
:
Polynomial.eval₂ σ y (minpolyDiv R x) = if σ x = y then σ ((Polynomial.aeval x) (Polynomial.derivative (minpoly R x))) else 0
theorem
eval₂_minpolyDiv_self
{R : Type u_2}
{S : Type u_3}
[CommRing R]
[CommRing S]
[Algebra R S]
{T : Type u_1}
[CommRing T]
[Algebra R T]
[IsDomain T]
[DecidableEq T]
(x : S)
(σ₁ : S →ₐ[R] T)
(σ₂ : S →ₐ[R] T)
:
Polynomial.eval₂ (↑σ₁) (σ₂ x) (minpolyDiv R x) = if σ₁ x = σ₂ x then σ₁ ((Polynomial.aeval x) (Polynomial.derivative (minpoly R x))) else 0
theorem
eval_minpolyDiv_of_aeval_eq_zero
{R : Type u_2}
{S : Type u_1}
[CommRing R]
[CommRing S]
[Algebra R S]
{x : S}
[IsDomain S]
[DecidableEq S]
{y : S}
(hy : (Polynomial.aeval y) (minpoly R x) = 0)
:
Polynomial.eval y (minpolyDiv R x) = if x = y then (Polynomial.aeval x) (Polynomial.derivative (minpoly R x)) else 0
theorem
natDegree_minpolyDiv_succ
{R : Type u_2}
{S : Type u_1}
[CommRing R]
[CommRing S]
[Algebra R S]
{x : S}
(hx : IsIntegral R x)
[Nontrivial S]
:
(minpolyDiv R x).natDegree + 1 = (minpoly R x).natDegree
theorem
natDegree_minpolyDiv_lt
{R : Type u_2}
{S : Type u_1}
[CommRing R]
[CommRing S]
[Algebra R S]
{x : S}
(hx : IsIntegral R x)
[Nontrivial S]
:
(minpolyDiv R x).natDegree < (minpoly R x).natDegree
theorem
coeff_minpolyDiv_mem_adjoin
{R : Type u_2}
{S : Type u_1}
[CommRing R]
[CommRing S]
[Algebra R S]
(x : S)
(i : ℕ)
:
(minpolyDiv R x).coeff i ∈ Algebra.adjoin R {x}
theorem
minpolyDiv_eq_of_isIntegrallyClosed
{R : Type u_1}
(K : Type u_3)
{S : Type u_2}
[CommRing R]
[Field K]
[CommRing S]
[Algebra R S]
{x : S}
(hx : IsIntegral R x)
[IsDomain R]
[IsIntegrallyClosed R]
[IsDomain S]
[Algebra R K]
[Algebra K S]
[IsScalarTower R K S]
[IsFractionRing R K]
:
minpolyDiv R x = minpolyDiv K x
theorem
coeff_minpolyDiv_sub_pow_mem_span
{R : Type u_2}
{S : Type u_1}
[CommRing R]
[CommRing S]
[Algebra R S]
{x : S}
(hx : IsIntegral R x)
{i : ℕ}
(hi : i ≤ (minpolyDiv R x).natDegree)
:
(minpolyDiv R x).coeff ((minpolyDiv R x).natDegree - i) - x ^ i ∈ Submodule.span R ((fun (x_1 : ℕ) => x ^ x_1) '' Set.Iio i)
theorem
span_coeff_minpolyDiv
{R : Type u_2}
{S : Type u_1}
[CommRing R]
[CommRing S]
[Algebra R S]
{x : S}
(hx : IsIntegral R x)
:
Submodule.span R (Set.range (minpolyDiv R x).coeff) = Subalgebra.toSubmodule (Algebra.adjoin R {x})
theorem
sum_smul_minpolyDiv_eq_X_pow
{K : Type u_2}
{L : Type u_3}
[Field K]
[Field L]
[Algebra K L]
(E : Type u_1)
[Field E]
[Algebra K E]
[IsAlgClosed E]
[FiniteDimensional K L]
[Algebra.IsSeparable K L]
{x : L}
(hxL : Algebra.adjoin K {x} = ⊤)
{r : ℕ}
(hr : r < FiniteDimensional.finrank K L)
:
∑ σ : L →ₐ[K] E,
Polynomial.map (↑σ) ((x ^ r / (Polynomial.aeval x) (Polynomial.derivative (minpoly K x))) • minpolyDiv K x) = Polynomial.X ^ r