Documentation

Mathlib.Data.Semiquot

Semiquotients #

A data type for semiquotients, which are classically equivalent to nonempty sets, but are useful for programming; the idea is that a semiquotient set S represents some (particular but unknown) element of S. This can be used to model nondeterministic functions, which return something in a range of values (represented by the predicate S) but are not completely determined.

structure Semiquot (α : Type u_1) :
Type u_1

A member of Semiquot α is classically a nonempty Set α, and in the VM is represented by an element of α; the relation between these is that the VM element is required to be a member of the set s. The specific element of s that the VM computes is hidden by a quotient construction, allowing for the representation of nondeterministic functions.

  • mk' :: (
    • s : Set α

      Set containing some element of α

    • val : Trunc self.s

      Assertion of non-emptiness via Trunc

  • )
Instances For
instance Semiquot.instMembership {α : Type u_1} :
Equations
  • Semiquot.instMembership = { mem := fun (a : α) (q : Semiquot α) => a q.s }
def Semiquot.mk {α : Type u_1} {a : α} {s : Set α} (h : a s) :

Construct a Semiquot α from h : a ∈ s where s : Set α.

Equations
theorem Semiquot.ext_s {α : Type u_1} {q₁ : Semiquot α} {q₂ : Semiquot α} :
q₁ = q₂ q₁.s = q₂.s
theorem Semiquot.ext {α : Type u_1} {q₁ : Semiquot α} {q₂ : Semiquot α} :
q₁ = q₂ ∀ (a : α), a q₁ a q₂
theorem Semiquot.exists_mem {α : Type u_1} (q : Semiquot α) :
∃ (a : α), a q
theorem Semiquot.eq_mk_of_mem {α : Type u_1} {q : Semiquot α} {a : α} (h : a q) :
theorem Semiquot.nonempty {α : Type u_1} (q : Semiquot α) :
q.s.Nonempty
def Semiquot.pure {α : Type u_1} (a : α) :

pure a is a reinterpreted as an unspecified element of {a}.

Equations
@[simp]
theorem Semiquot.mem_pure' {α : Type u_1} {a : α} {b : α} :
def Semiquot.blur' {α : Type u_1} (q : Semiquot α) {s : Set α} (h : q.s s) :

Replace s in a Semiquot with a superset.

Equations
  • q.blur' h = { s := s, val := Trunc.lift (fun (a : q.s) => Trunc.mk a, ) q.val }
def Semiquot.blur {α : Type u_1} (s : Set α) (q : Semiquot α) :

Replace s in a q : Semiquot α with a union s ∪ q.s

Equations
theorem Semiquot.blur_eq_blur' {α : Type u_1} (q : Semiquot α) (s : Set α) (h : q.s s) :
Semiquot.blur s q = q.blur' h
@[simp]
theorem Semiquot.mem_blur' {α : Type u_1} (q : Semiquot α) {s : Set α} (h : q.s s) {a : α} :
a q.blur' h a s
def Semiquot.ofTrunc {α : Type u_1} (q : Trunc α) :

Convert a Trunc α to a Semiquot α.

Equations
def Semiquot.toTrunc {α : Type u_1} (q : Semiquot α) :

Convert a Semiquot α to a Trunc α.

Equations
def Semiquot.liftOn {α : Type u_1} {β : Type u_2} (q : Semiquot α) (f : αβ) (h : aq, bq, f a = f b) :
β

If f is a constant on q.s, then q.liftOn f is the value of f at any point of q.

Equations
  • q.liftOn f h = q.val.liftOn (fun (x : q.s) => f x)
theorem Semiquot.liftOn_ofMem {α : Type u_1} {β : Type u_2} (q : Semiquot α) (f : αβ) (h : aq, bq, f a = f b) (a : α) (aq : a q) :
q.liftOn f h = f a
def Semiquot.map {α : Type u_1} {β : Type u_2} (f : αβ) (q : Semiquot α) :

Apply a function to the unknown value stored in a Semiquot α.

Equations
@[simp]
theorem Semiquot.mem_map {α : Type u_1} {β : Type u_2} (f : αβ) (q : Semiquot α) (b : β) :
b Semiquot.map f q aq, f a = b
def Semiquot.bind {α : Type u_1} {β : Type u_2} (q : Semiquot α) (f : αSemiquot β) :

Apply a function returning a Semiquot to a Semiquot.

Equations
  • q.bind f = { s := aq.s, (f a).s, val := q.val.bind fun (a : q.s) => Trunc.map (fun (b : (f a).s) => b, ) (f a).val }
@[simp]
theorem Semiquot.mem_bind {α : Type u_1} {β : Type u_2} (q : Semiquot α) (f : αSemiquot β) (b : β) :
b q.bind f aq, b f a
@[simp]
theorem Semiquot.map_def {α : Type u_1} {β : Type u_1} :
(fun (x : αβ) (x_1 : Semiquot α) => x <$> x_1) = Semiquot.map
@[simp]
theorem Semiquot.bind_def {α : Type u_1} {β : Type u_1} :
(fun (x : Semiquot α) (x_1 : αSemiquot β) => x >>= x_1) = Semiquot.bind
@[simp]
theorem Semiquot.mem_pure {α : Type u_1} {a : α} {b : α} :
a pure b a = b
theorem Semiquot.mem_pure_self {α : Type u_1} (a : α) :
a pure a
@[simp]
theorem Semiquot.pure_inj {α : Type u_1} {a : α} {b : α} :
pure a = pure b a = b
instance Semiquot.instLE {α : Type u_1} :
Equations
  • Semiquot.instLE = { le := fun (s t : Semiquot α) => s.s t.s }
Equations
Equations
  • Semiquot.instSemilatticeSup = let __src := Semiquot.partialOrder; SemilatticeSup.mk
@[simp]
theorem Semiquot.pure_le {α : Type u_1} {a : α} {s : Semiquot α} :
pure a s a s
def Semiquot.IsPure {α : Type u_1} (q : Semiquot α) :

Assert that a Semiquot contains only one possible value.

Equations
  • q.IsPure = aq, bq, a = b
def Semiquot.get {α : Type u_1} (q : Semiquot α) (h : q.IsPure) :
α

Extract the value from an IsPure semiquotient.

Equations
  • q.get h = q.liftOn id h
theorem Semiquot.get_mem {α : Type u_1} {q : Semiquot α} (p : q.IsPure) :
q.get p q
theorem Semiquot.eq_pure {α : Type u_1} {q : Semiquot α} (p : q.IsPure) :
q = pure (q.get p)
@[simp]
theorem Semiquot.pure_isPure {α : Type u_1} (a : α) :
(pure a).IsPure
theorem Semiquot.isPure_iff {α : Type u_1} {s : Semiquot α} :
s.IsPure ∃ (a : α), s = pure a
theorem Semiquot.IsPure.mono {α : Type u_1} {s : Semiquot α} {t : Semiquot α} (st : s t) (h : t.IsPure) :
s.IsPure
theorem Semiquot.IsPure.min {α : Type u_1} {s : Semiquot α} {t : Semiquot α} (h : t.IsPure) :
s t s = t
theorem Semiquot.isPure_of_subsingleton {α : Type u_1} [Subsingleton α] (q : Semiquot α) :
q.IsPure
def Semiquot.univ {α : Type u_1} [Inhabited α] :

univ : Semiquot α represents an unspecified element of univ : Set α.

Equations
instance Semiquot.instInhabited {α : Type u_1} [Inhabited α] :
Equations
  • Semiquot.instInhabited = { default := Semiquot.univ }
@[simp]
theorem Semiquot.mem_univ {α : Type u_1} [Inhabited α] (a : α) :
a Semiquot.univ
theorem Semiquot.univ_unique {α : Type u_1} (I : Inhabited α) (J : Inhabited α) :
Semiquot.univ = Semiquot.univ
@[simp]
theorem Semiquot.isPure_univ {α : Type u_1} [Inhabited α] :
Semiquot.univ.IsPure Subsingleton α
Equations