Finite intervals of finitely supported functions #
This file provides the LocallyFiniteOrder
instance for ι →₀ α
when α
itself is locally
finite and calculates the cardinality of its finite intervals.
Main declarations #
Finsupp.rangeSingleton
: Postcomposition withSingleton.singleton
onFinset
as aFinsupp
.Finsupp.rangeIcc
: Postcomposition withFinset.Icc
as aFinsupp
.
Both these definitions use the fact that 0 = {0}
to ensure that the resulting function is finitely
supported.
@[simp]
theorem
Finsupp.rangeIcc_toFun
{ι : Type u_1}
{α : Type u_2}
[Zero α]
[PartialOrder α]
[LocallyFiniteOrder α]
(f : ι →₀ α)
(g : ι →₀ α)
(i : ι)
:
(f.rangeIcc g) i = Finset.Icc (f i) (g i)
def
Finsupp.rangeIcc
{ι : Type u_1}
{α : Type u_2}
[Zero α]
[PartialOrder α]
[LocallyFiniteOrder α]
(f : ι →₀ α)
(g : ι →₀ α)
:
Pointwise Finset.Icc
bundled as a Finsupp
.
Equations
- f.rangeIcc g = { support := f.support ∪ g.support, toFun := fun (i : ι) => Finset.Icc (f i) (g i), mem_support_toFun := ⋯ }
Instances For
theorem
Finsupp.coe_rangeIcc
{ι : Type u_1}
{α : Type u_2}
[Zero α]
[PartialOrder α]
[LocallyFiniteOrder α]
{i : ι}
(f : ι →₀ α)
(g : ι →₀ α)
:
(f.rangeIcc g) i = Finset.Icc (f i) (g i)
@[simp]
theorem
Finsupp.rangeIcc_support
{ι : Type u_1}
{α : Type u_2}
[Zero α]
[PartialOrder α]
[LocallyFiniteOrder α]
(f : ι →₀ α)
(g : ι →₀ α)
:
theorem
Finsupp.mem_rangeIcc_apply_iff
{ι : Type u_1}
{α : Type u_2}
[Zero α]
[PartialOrder α]
[LocallyFiniteOrder α]
{f : ι →₀ α}
{g : ι →₀ α}
{i : ι}
{a : α}
:
instance
Finsupp.instLocallyFiniteOrder
{ι : Type u_1}
{α : Type u_2}
[PartialOrder α]
[Zero α]
[LocallyFiniteOrder α]
:
LocallyFiniteOrder (ι →₀ α)
Equations
- Finsupp.instLocallyFiniteOrder = LocallyFiniteOrder.ofIcc (ι →₀ α) (fun (f g : ι →₀ α) => (f.support ∪ g.support).finsupp ⇑(f.rangeIcc g)) ⋯
theorem
Finsupp.Icc_eq
{ι : Type u_1}
{α : Type u_2}
[PartialOrder α]
[Zero α]
[LocallyFiniteOrder α]
(f : ι →₀ α)
(g : ι →₀ α)
:
Finset.Icc f g = (f.support ∪ g.support).finsupp ⇑(f.rangeIcc g)
theorem
Finsupp.card_Icc
{ι : Type u_1}
{α : Type u_2}
[PartialOrder α]
[Zero α]
[LocallyFiniteOrder α]
(f : ι →₀ α)
(g : ι →₀ α)
:
(Finset.Icc f g).card = ∏ i ∈ f.support ∪ g.support, (Finset.Icc (f i) (g i)).card
theorem
Finsupp.card_Ico
{ι : Type u_1}
{α : Type u_2}
[PartialOrder α]
[Zero α]
[LocallyFiniteOrder α]
(f : ι →₀ α)
(g : ι →₀ α)
:
(Finset.Ico f g).card = ∏ i ∈ f.support ∪ g.support, (Finset.Icc (f i) (g i)).card - 1
theorem
Finsupp.card_Ioc
{ι : Type u_1}
{α : Type u_2}
[PartialOrder α]
[Zero α]
[LocallyFiniteOrder α]
(f : ι →₀ α)
(g : ι →₀ α)
:
(Finset.Ioc f g).card = ∏ i ∈ f.support ∪ g.support, (Finset.Icc (f i) (g i)).card - 1
theorem
Finsupp.card_Ioo
{ι : Type u_1}
{α : Type u_2}
[PartialOrder α]
[Zero α]
[LocallyFiniteOrder α]
(f : ι →₀ α)
(g : ι →₀ α)
:
(Finset.Ioo f g).card = ∏ i ∈ f.support ∪ g.support, (Finset.Icc (f i) (g i)).card - 2
theorem
Finsupp.card_uIcc
{ι : Type u_1}
{α : Type u_2}
[Lattice α]
[Zero α]
[LocallyFiniteOrder α]
(f : ι →₀ α)
(g : ι →₀ α)
:
(Finset.uIcc f g).card = ∏ i ∈ f.support ∪ g.support, (Finset.uIcc (f i) (g i)).card
theorem
Finsupp.card_Iic
{ι : Type u_1}
{α : Type u_2}
[CanonicallyOrderedAddCommMonoid α]
[LocallyFiniteOrder α]
(f : ι →₀ α)
:
(Finset.Iic f).card = ∏ i ∈ f.support, (Finset.Iic (f i)).card
theorem
Finsupp.card_Iio
{ι : Type u_1}
{α : Type u_2}
[CanonicallyOrderedAddCommMonoid α]
[LocallyFiniteOrder α]
(f : ι →₀ α)
:
(Finset.Iio f).card = ∏ i ∈ f.support, (Finset.Iic (f i)).card - 1