The Yoneda functors are homological #
Let C
be a pretriangulated category. In this file, we show that the
functors preadditiveCoyoneda.obj A : C ⥤ AddCommGrp
for A : Cᵒᵖ
and
preadditiveYoneda.obj B : Cᵒᵖ ⥤ AddCommGrp
for B : C
are homological functors.
instance
CategoryTheory.Pretriangulated.instIsHomologicalAddCommGrpObjOppositeFunctorPreadditiveCoyoneda
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasZeroObject C]
[CategoryTheory.HasShift C ℤ]
[∀ (n : ℤ), (CategoryTheory.shiftFunctor C n).Additive]
[CategoryTheory.Pretriangulated C]
(A : Cᵒᵖ)
:
(CategoryTheory.preadditiveCoyoneda.obj A).IsHomological
Equations
- ⋯ = ⋯
instance
CategoryTheory.Pretriangulated.instIsHomologicalOppositeAddCommGrpObjFunctorPreadditiveYoneda
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasZeroObject C]
[CategoryTheory.HasShift C ℤ]
[∀ (n : ℤ), (CategoryTheory.shiftFunctor C n).Additive]
[CategoryTheory.Pretriangulated C]
(B : C)
:
(CategoryTheory.preadditiveYoneda.obj B).IsHomological
Equations
- ⋯ = ⋯
theorem
CategoryTheory.Pretriangulated.preadditiveYoneda_map_distinguished
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasZeroObject C]
[CategoryTheory.HasShift C ℤ]
[∀ (n : ℤ), (CategoryTheory.shiftFunctor C n).Additive]
[CategoryTheory.Pretriangulated C]
(T : CategoryTheory.Pretriangulated.Triangle C)
(hT : T ∈ CategoryTheory.Pretriangulated.distinguishedTriangles)
(B : C)
:
((CategoryTheory.Pretriangulated.shortComplexOfDistTriangle T hT).op.map (CategoryTheory.preadditiveYoneda.obj B)).Exact
noncomputable instance
CategoryTheory.Pretriangulated.instShiftSequenceAddCommGrpObjOppositeFunctorPreadditiveCoyonedaInt
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.HasShift C ℤ]
(A : Cᵒᵖ)
:
(CategoryTheory.preadditiveCoyoneda.obj A).ShiftSequence ℤ
Equations
- CategoryTheory.Pretriangulated.instShiftSequenceAddCommGrpObjOppositeFunctorPreadditiveCoyonedaInt A = CategoryTheory.Functor.ShiftSequence.tautological (CategoryTheory.preadditiveCoyoneda.obj A) ℤ
theorem
CategoryTheory.Pretriangulated.preadditiveCoyoneda_homologySequenceδ_apply
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.HasShift C ℤ]
(A : Cᵒᵖ)
(T : CategoryTheory.Pretriangulated.Triangle C)
(n₀ : ℤ)
(n₁ : ℤ)
(h : n₀ + 1 = n₁)
(x : Opposite.unop A ⟶ (CategoryTheory.shiftFunctor C n₀).obj T.obj₃)
:
((CategoryTheory.preadditiveCoyoneda.obj A).homologySequenceδ T n₀ n₁ h) x = CategoryTheory.CategoryStruct.comp x
(CategoryTheory.CategoryStruct.comp ((CategoryTheory.shiftFunctor C n₀).map T.mor₃)
((CategoryTheory.shiftFunctorAdd' C 1 n₀ n₁ ⋯).inv.app T.obj₁))