Description of the covering sieves of the regular topology #
This file characterises the covering sieves of the regular topology.
Main result #
regularTopology.mem_sieves_iff_hasEffectiveEpi
: a sieve is a covering sieve for the regular topology if and only if it contains an effective epi.
theorem
CategoryTheory.regularTopology.mem_sieves_of_hasEffectiveEpi
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preregular C]
{X : C}
(S : CategoryTheory.Sieve X)
:
(∃ (Y : C) (π : Y ⟶ X), CategoryTheory.EffectiveEpi π ∧ S.arrows π) → S ∈ (CategoryTheory.regularTopology C).sieves X
For a preregular category, any sieve that contains an EffectiveEpi
is a covering sieve of the
regular topology.
Note: This is one direction of mem_sieves_iff_hasEffectiveEpi
, but is needed for the proof.
instance
CategoryTheory.regularTopology.instEffectiveEpiComp
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preregular C]
{X : C}
{Y : C}
{Y' : C}
(π : Y ⟶ X)
[CategoryTheory.EffectiveEpi π]
(π' : Y' ⟶ Y)
[CategoryTheory.EffectiveEpi π']
:
Effective epis in a preregular category are stable under composition.
Equations
- ⋯ = ⋯
theorem
CategoryTheory.regularTopology.mem_sieves_iff_hasEffectiveEpi
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preregular C]
{X : C}
(S : CategoryTheory.Sieve X)
:
S ∈ (CategoryTheory.regularTopology C).sieves X ↔ ∃ (Y : C) (π : Y ⟶ X), CategoryTheory.EffectiveEpi π ∧ S.arrows π
A sieve is a cover for the regular topology if and only if it contains an EffectiveEpi
.