Documentation

Mathlib.CategoryTheory.Monoidal.NaturalTransformation

Monoidal natural transformations #

Natural transformations between (lax) monoidal functors must satisfy an additional compatibility relation with the tensorators: F.μ X Y ≫ app (X ⊗ Y) = (app X ⊗ app Y) ≫ G.μ X Y.

(Lax) monoidal functors between a fixed pair of monoidal categories themselves form a category.

A monoidal natural transformation is a natural transformation between (lax) monoidal functors additionally satisfying: F.μ X Y ≫ app (X ⊗ Y) = (app X ⊗ app Y) ≫ G.μ X Y

Instances For

    The identity monoidal natural transformation.

    Equations
    Instances For

      Vertical composition of monoidal natural transformations.

      Equations
      • α.vcomp β = let __src := α.vcomp β.toNatTrans; { toNatTrans := __src, unit := , tensor := }
      Instances For

        Horizontal composition of monoidal natural transformations.

        Equations
        • α.hcomp β = let __src := α.toNatTrans β.toNatTrans; { toNatTrans := __src, unit := , tensor := }
        Instances For

          The cartesian product of two monoidal natural transformations is monoidal.

          Equations
          • α.prod β = { app := fun (X : C) => (α.app X, β.app X), naturality := , unit := , tensor := }
          Instances For

            Construct a monoidal natural isomorphism from object level isomorphisms, and the monoidal naturality in the forward direction.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem CategoryTheory.MonoidalNatIso.ofComponents.hom_app {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] [CategoryTheory.MonoidalCategory D] {F : CategoryTheory.LaxMonoidalFunctor C D} {G : CategoryTheory.LaxMonoidalFunctor C D} (app : (X : C) → F.obj X G.obj X) (naturality : ∀ {X Y : C} (f : X Y), CategoryTheory.CategoryStruct.comp (F.map f) (app Y).hom = CategoryTheory.CategoryStruct.comp (app X).hom (G.map f)) (unit : CategoryTheory.CategoryStruct.comp F (app (𝟙_ C)).hom = G) (tensor : ∀ (X Y : C), CategoryTheory.CategoryStruct.comp (F X Y) (app (CategoryTheory.MonoidalCategory.tensorObj X Y)).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (app X).hom (app Y).hom) (G X Y)) (X : C) :
              (CategoryTheory.MonoidalNatIso.ofComponents app naturality unit tensor).hom.app X = (app X).hom
              @[simp]
              theorem CategoryTheory.MonoidalNatIso.ofComponents.inv_app {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] [CategoryTheory.MonoidalCategory D] {F : CategoryTheory.LaxMonoidalFunctor C D} {G : CategoryTheory.LaxMonoidalFunctor C D} (app : (X : C) → F.obj X G.obj X) (naturality : ∀ {X Y : C} (f : X Y), CategoryTheory.CategoryStruct.comp (F.map f) (app Y).hom = CategoryTheory.CategoryStruct.comp (app X).hom (G.map f)) (unit : CategoryTheory.CategoryStruct.comp F (app (𝟙_ C)).hom = G) (tensor : ∀ (X Y : C), CategoryTheory.CategoryStruct.comp (F X Y) (app (CategoryTheory.MonoidalCategory.tensorObj X Y)).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (app X).hom (app Y).hom) (G X Y)) (X : C) :
              (CategoryTheory.MonoidalNatIso.ofComponents app naturality unit tensor).inv.app X = (app X).inv

              The unit of a adjunction can be upgraded to a monoidal natural transformation.

              Equations
              Instances For

                The unit of a adjunction can be upgraded to a monoidal natural transformation.

                Equations
                Instances For