Monoidal natural transformations #
Natural transformations between (lax) monoidal functors must satisfy
an additional compatibility relation with the tensorators:
F.μ X Y ≫ app (X ⊗ Y) = (app X ⊗ app Y) ≫ G.μ X Y
.
(Lax) monoidal functors between a fixed pair of monoidal categories themselves form a category.
A monoidal natural transformation is a natural transformation between (lax) monoidal functors
additionally satisfying:
F.μ X Y ≫ app (X ⊗ Y) = (app X ⊗ app Y) ≫ G.μ X Y
- app : (X : C) → F.obj X ⟶ G.obj X
- naturality : ∀ ⦃X Y : C⦄ (f : X ⟶ Y), CategoryTheory.CategoryStruct.comp (F.map f) (self.app Y) = CategoryTheory.CategoryStruct.comp (self.app X) (G.map f)
- unit : CategoryTheory.CategoryStruct.comp F.ε (self.app (𝟙_ C)) = G.ε
The unit condition for a monoidal natural transformation.
- tensor : ∀ (X Y : C), CategoryTheory.CategoryStruct.comp (F.μ X Y) (self.app (CategoryTheory.MonoidalCategory.tensorObj X Y)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (self.app X) (self.app Y)) (G.μ X Y)
The tensor condition for a monoidal natural transformation.
Instances For
The unit condition for a monoidal natural transformation.
The tensor condition for a monoidal natural transformation.
The identity monoidal natural transformation.
Equations
- CategoryTheory.MonoidalNatTrans.id F = let __src := CategoryTheory.CategoryStruct.id F.toFunctor; { toNatTrans := __src, unit := ⋯, tensor := ⋯ }
Instances For
Equations
- CategoryTheory.MonoidalNatTrans.instInhabited F = { default := CategoryTheory.MonoidalNatTrans.id F }
Vertical composition of monoidal natural transformations.
Equations
- α.vcomp β = let __src := α.vcomp β.toNatTrans; { toNatTrans := __src, unit := ⋯, tensor := ⋯ }
Instances For
Equations
- CategoryTheory.MonoidalNatTrans.categoryLaxMonoidalFunctor = CategoryTheory.Category.mk ⋯ ⋯ ⋯
Equations
- CategoryTheory.MonoidalNatTrans.categoryMonoidalFunctor = CategoryTheory.InducedCategory.category CategoryTheory.MonoidalFunctor.toLaxMonoidalFunctor
Horizontal composition of monoidal natural transformations.
Equations
Instances For
The cartesian product of two monoidal natural transformations is monoidal.
Equations
- α.prod β = { app := fun (X : C) => (α.app X, β.app X), naturality := ⋯, unit := ⋯, tensor := ⋯ }
Instances For
Construct a monoidal natural isomorphism from object level isomorphisms, and the monoidal naturality in the forward direction.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- ⋯ = ⋯
The unit of a adjunction can be upgraded to a monoidal natural transformation.
Equations
- CategoryTheory.monoidalUnit F h = { toNatTrans := h.unit, unit := ⋯, tensor := ⋯ }
Instances For
The unit of a adjunction can be upgraded to a monoidal natural transformation.
Equations
- CategoryTheory.monoidalCounit F h = { toNatTrans := h.counit, unit := ⋯, tensor := ⋯ }
Instances For
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯