Endofunctors as a monoidal category. #
We give the monoidal category structure on C ⥤ C
,
and show that when C
itself is monoidal, it embeds via a monoidal functor into C ⥤ C
.
TODO #
Can we use this to show coherence results, e.g. a cheap proof that λ_ (𝟙_ C) = ρ_ (𝟙_ C)
?
I suspect this is harder than is usually made out.
The category of endofunctors of any category is a monoidal category, with tensor product given by composition of functors (and horizontal composition of natural transformations).
Equations
- CategoryTheory.endofunctorMonoidalCategory C = CategoryTheory.MonoidalCategory.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
Instances For
@[simp]
theorem
CategoryTheory.endofunctorMonoidalCategory_tensorUnit_obj
(C : Type u)
[CategoryTheory.Category.{v, u} C]
(X : C)
:
(𝟙_ (CategoryTheory.Functor C C)).obj X = X
@[simp]
theorem
CategoryTheory.endofunctorMonoidalCategory_tensorUnit_map
(C : Type u)
[CategoryTheory.Category.{v, u} C]
{X : C}
{Y : C}
(f : X ⟶ Y)
:
(𝟙_ (CategoryTheory.Functor C C)).map f = f
@[simp]
theorem
CategoryTheory.endofunctorMonoidalCategory_tensorObj_obj
(C : Type u)
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor C C)
(G : CategoryTheory.Functor C C)
(X : C)
:
(CategoryTheory.MonoidalCategory.tensorObj F G).obj X = G.obj (F.obj X)
@[simp]
theorem
CategoryTheory.endofunctorMonoidalCategory_tensorObj_map
(C : Type u)
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor C C)
(G : CategoryTheory.Functor C C)
{X : C}
{Y : C}
(f : X ⟶ Y)
:
(CategoryTheory.MonoidalCategory.tensorObj F G).map f = G.map (F.map f)
@[simp]
theorem
CategoryTheory.endofunctorMonoidalCategory_tensorMap_app
(C : Type u)
[CategoryTheory.Category.{v, u} C]
{F : CategoryTheory.Functor C C}
{G : CategoryTheory.Functor C C}
{H : CategoryTheory.Functor C C}
{K : CategoryTheory.Functor C C}
{α : F ⟶ G}
{β : H ⟶ K}
(X : C)
:
(CategoryTheory.MonoidalCategory.tensorHom α β).app X = CategoryTheory.CategoryStruct.comp (β.app (F.obj X)) (K.map (α.app X))
@[simp]
theorem
CategoryTheory.endofunctorMonoidalCategory_whiskerLeft_app
(C : Type u)
[CategoryTheory.Category.{v, u} C]
{F : CategoryTheory.Functor C C}
{H : CategoryTheory.Functor C C}
{K : CategoryTheory.Functor C C}
{β : H ⟶ K}
(X : C)
:
(CategoryTheory.MonoidalCategory.whiskerLeft F β).app X = β.app (F.obj X)
@[simp]
theorem
CategoryTheory.endofunctorMonoidalCategory_whiskerRight_app
(C : Type u)
[CategoryTheory.Category.{v, u} C]
{F : CategoryTheory.Functor C C}
{G : CategoryTheory.Functor C C}
{H : CategoryTheory.Functor C C}
{α : F ⟶ G}
(X : C)
:
(CategoryTheory.MonoidalCategory.whiskerRight α H).app X = H.map (α.app X)
@[simp]
theorem
CategoryTheory.endofunctorMonoidalCategory_associator_hom_app
(C : Type u)
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor C C)
(G : CategoryTheory.Functor C C)
(H : CategoryTheory.Functor C C)
(X : C)
:
(CategoryTheory.MonoidalCategory.associator F G H).hom.app X = CategoryTheory.CategoryStruct.id
((CategoryTheory.MonoidalCategory.tensorObj (CategoryTheory.MonoidalCategory.tensorObj F G) H).obj X)
@[simp]
theorem
CategoryTheory.endofunctorMonoidalCategory_associator_inv_app
(C : Type u)
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor C C)
(G : CategoryTheory.Functor C C)
(H : CategoryTheory.Functor C C)
(X : C)
:
(CategoryTheory.MonoidalCategory.associator F G H).inv.app X = CategoryTheory.CategoryStruct.id
((CategoryTheory.MonoidalCategory.tensorObj F (CategoryTheory.MonoidalCategory.tensorObj G H)).obj X)
@[simp]
theorem
CategoryTheory.endofunctorMonoidalCategory_leftUnitor_hom_app
(C : Type u)
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor C C)
(X : C)
:
(CategoryTheory.MonoidalCategory.leftUnitor F).hom.app X = CategoryTheory.CategoryStruct.id
((CategoryTheory.MonoidalCategory.tensorObj (𝟙_ (CategoryTheory.Functor C C)) F).obj X)
@[simp]
theorem
CategoryTheory.endofunctorMonoidalCategory_leftUnitor_inv_app
(C : Type u)
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor C C)
(X : C)
:
(CategoryTheory.MonoidalCategory.leftUnitor F).inv.app X = CategoryTheory.CategoryStruct.id (F.obj X)
@[simp]
theorem
CategoryTheory.endofunctorMonoidalCategory_rightUnitor_hom_app
(C : Type u)
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor C C)
(X : C)
:
(CategoryTheory.MonoidalCategory.rightUnitor F).hom.app X = CategoryTheory.CategoryStruct.id
((CategoryTheory.MonoidalCategory.tensorObj F (𝟙_ (CategoryTheory.Functor C C))).obj X)
@[simp]
theorem
CategoryTheory.endofunctorMonoidalCategory_rightUnitor_inv_app
(C : Type u)
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor C C)
(X : C)
:
(CategoryTheory.MonoidalCategory.rightUnitor F).inv.app X = CategoryTheory.CategoryStruct.id (F.obj X)
@[simp]
theorem
CategoryTheory.tensoringRightMonoidal_toLaxMonoidalFunctor_ε_app
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.MonoidalCategory C]
(X : C)
:
(CategoryTheory.tensoringRightMonoidal C).ε.app X = (CategoryTheory.MonoidalCategory.rightUnitor X).inv
@[simp]
theorem
CategoryTheory.tensoringRightMonoidal_toLaxMonoidalFunctor_toFunctor_map_app
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.MonoidalCategory C]
:
∀ {X Y : C} (f : X ⟶ Y) (j : C),
((CategoryTheory.tensoringRightMonoidal C).map f).app j = CategoryTheory.MonoidalCategory.whiskerLeft j f
@[simp]
theorem
CategoryTheory.tensoringRightMonoidal_toLaxMonoidalFunctor_toFunctor_obj_map
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.MonoidalCategory C]
(k : C)
:
∀ {X Y : C} (f : X ⟶ Y),
((CategoryTheory.tensoringRightMonoidal C).obj k).map f = CategoryTheory.MonoidalCategory.whiskerRight f k
@[simp]
theorem
CategoryTheory.tensoringRightMonoidal_toLaxMonoidalFunctor_toFunctor_obj_obj
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.MonoidalCategory C]
(k : C)
(j : C)
:
((CategoryTheory.tensoringRightMonoidal C).obj k).obj j = CategoryTheory.MonoidalCategory.tensorObj j k
@[simp]
theorem
CategoryTheory.tensoringRightMonoidal_toLaxMonoidalFunctor_μ_app
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.MonoidalCategory C]
(X : C)
(Y : C)
(X : C)
:
((CategoryTheory.tensoringRightMonoidal C).μ X✝ Y).app X = (CategoryTheory.MonoidalCategory.associator X X✝ Y).hom
def
CategoryTheory.tensoringRightMonoidal
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.MonoidalCategory C]
:
Tensoring on the right gives a monoidal functor from C
into endofunctors of C
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.μ_hom_inv_app_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(i : M)
(j : M)
(X : C)
{Z : C}
(h : (CategoryTheory.MonoidalCategory.tensorObj (F.obj i) (F.obj j)).obj X ⟶ Z)
:
CategoryTheory.CategoryStruct.comp ((F.μ i j).app X) (CategoryTheory.CategoryStruct.comp ((F.μIso i j).inv.app X) h) = h
@[simp]
theorem
CategoryTheory.μ_hom_inv_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(i : M)
(j : M)
(X : C)
:
CategoryTheory.CategoryStruct.comp ((F.μ i j).app X) ((F.μIso i j).inv.app X) = CategoryTheory.CategoryStruct.id ((CategoryTheory.MonoidalCategory.tensorObj (F.obj i) (F.obj j)).obj X)
@[simp]
theorem
CategoryTheory.μ_inv_hom_app_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(i : M)
(j : M)
(X : C)
{Z : C}
(h : (F.obj (CategoryTheory.MonoidalCategory.tensorObj i j)).obj X ⟶ Z)
:
CategoryTheory.CategoryStruct.comp ((F.μIso i j).inv.app X) (CategoryTheory.CategoryStruct.comp ((F.μ i j).app X) h) = h
@[simp]
theorem
CategoryTheory.μ_inv_hom_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(i : M)
(j : M)
(X : C)
:
CategoryTheory.CategoryStruct.comp ((F.μIso i j).inv.app X) ((F.μ i j).app X) = CategoryTheory.CategoryStruct.id ((F.obj (CategoryTheory.MonoidalCategory.tensorObj i j)).obj X)
@[simp]
theorem
CategoryTheory.ε_hom_inv_app_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(X : C)
{Z : C}
(h : (𝟙_ (CategoryTheory.Functor C C)).obj X ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (F.ε.app X) (CategoryTheory.CategoryStruct.comp (F.εIso.inv.app X) h) = h
@[simp]
theorem
CategoryTheory.ε_hom_inv_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(X : C)
:
CategoryTheory.CategoryStruct.comp (F.ε.app X) (F.εIso.inv.app X) = CategoryTheory.CategoryStruct.id ((𝟙_ (CategoryTheory.Functor C C)).obj X)
@[simp]
theorem
CategoryTheory.ε_inv_hom_app_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(X : C)
{Z : C}
(h : (F.obj (𝟙_ M)).obj X ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (F.εIso.inv.app X) (CategoryTheory.CategoryStruct.comp (F.ε.app X) h) = h
@[simp]
theorem
CategoryTheory.ε_inv_hom_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(X : C)
:
CategoryTheory.CategoryStruct.comp (F.εIso.inv.app X) (F.ε.app X) = CategoryTheory.CategoryStruct.id ((F.obj (𝟙_ M)).obj X)
@[simp]
theorem
CategoryTheory.ε_naturality_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
{X : C}
{Y : C}
(f : X ⟶ Y)
{Z : C}
(h : (F.obj (𝟙_ M)).obj Y ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (F.ε.app X) (CategoryTheory.CategoryStruct.comp ((F.obj (𝟙_ M)).map f) h) = CategoryTheory.CategoryStruct.comp f (CategoryTheory.CategoryStruct.comp (F.ε.app Y) h)
@[simp]
theorem
CategoryTheory.ε_naturality
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
{X : C}
{Y : C}
(f : X ⟶ Y)
:
CategoryTheory.CategoryStruct.comp (F.ε.app X) ((F.obj (𝟙_ M)).map f) = CategoryTheory.CategoryStruct.comp f (F.ε.app Y)
@[simp]
theorem
CategoryTheory.ε_inv_naturality_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
{X : C}
{Y : C}
(f : X ⟶ Y)
{Z : C}
(h : (𝟙_ (CategoryTheory.Functor C C)).obj Y ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (F.εIso.inv.app X)
(CategoryTheory.CategoryStruct.comp ((𝟙_ (CategoryTheory.Functor C C)).map f) h) = CategoryTheory.CategoryStruct.comp (F.εIso.inv.app X) (CategoryTheory.CategoryStruct.comp f h)
@[simp]
theorem
CategoryTheory.ε_inv_naturality
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
{X : C}
{Y : C}
(f : X ⟶ Y)
:
CategoryTheory.CategoryStruct.comp (F.εIso.inv.app X) ((𝟙_ (CategoryTheory.Functor C C)).map f) = CategoryTheory.CategoryStruct.comp (F.εIso.inv.app X) f
@[simp]
theorem
CategoryTheory.μ_naturality_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
{m : M}
{n : M}
{X : C}
{Y : C}
(f : X ⟶ Y)
{Z : C}
(h : (F.obj (CategoryTheory.MonoidalCategory.tensorObj m n)).obj Y ⟶ Z)
:
CategoryTheory.CategoryStruct.comp ((F.obj n).map ((F.obj m).map f))
(CategoryTheory.CategoryStruct.comp ((F.μ m n).app Y) h) = CategoryTheory.CategoryStruct.comp ((F.μ m n).app X)
(CategoryTheory.CategoryStruct.comp ((F.obj (CategoryTheory.MonoidalCategory.tensorObj m n)).map f) h)
@[simp]
theorem
CategoryTheory.μ_naturality
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
{m : M}
{n : M}
{X : C}
{Y : C}
(f : X ⟶ Y)
:
CategoryTheory.CategoryStruct.comp ((F.obj n).map ((F.obj m).map f)) ((F.μ m n).app Y) = CategoryTheory.CategoryStruct.comp ((F.μ m n).app X) ((F.obj (CategoryTheory.MonoidalCategory.tensorObj m n)).map f)
theorem
CategoryTheory.μ_inv_naturality_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
{m : M}
{n : M}
{X : C}
{Y : C}
(f : X ⟶ Y)
{Z : C}
(h : (F.obj n).obj ((F.obj m).obj Y) ⟶ Z)
:
CategoryTheory.CategoryStruct.comp ((F.μIso m n).inv.app X)
(CategoryTheory.CategoryStruct.comp ((F.obj n).map ((F.obj m).map f)) h) = CategoryTheory.CategoryStruct.comp ((F.obj (CategoryTheory.MonoidalCategory.tensorObj m n)).map f)
(CategoryTheory.CategoryStruct.comp ((F.μIso m n).inv.app Y) h)
theorem
CategoryTheory.μ_inv_naturality
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
{m : M}
{n : M}
{X : C}
{Y : C}
(f : X ⟶ Y)
:
CategoryTheory.CategoryStruct.comp ((F.μIso m n).inv.app X) ((F.obj n).map ((F.obj m).map f)) = CategoryTheory.CategoryStruct.comp ((F.obj (CategoryTheory.MonoidalCategory.tensorObj m n)).map f)
((F.μIso m n).inv.app Y)
theorem
CategoryTheory.μ_naturality₂_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
{m : M}
{n : M}
{m' : M}
{n' : M}
(f : m ⟶ m')
(g : n ⟶ n')
(X : C)
{Z : C}
(h : (F.obj (CategoryTheory.MonoidalCategory.tensorObj m' n')).obj X ⟶ Z)
:
CategoryTheory.CategoryStruct.comp ((F.map g).app ((F.obj m).obj X))
(CategoryTheory.CategoryStruct.comp ((F.obj n').map ((F.map f).app X))
(CategoryTheory.CategoryStruct.comp ((F.μ m' n').app X) h)) = CategoryTheory.CategoryStruct.comp ((F.μ m n).app X)
(CategoryTheory.CategoryStruct.comp ((F.map (CategoryTheory.MonoidalCategory.tensorHom f g)).app X) h)
theorem
CategoryTheory.μ_naturality₂
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
{m : M}
{n : M}
{m' : M}
{n' : M}
(f : m ⟶ m')
(g : n ⟶ n')
(X : C)
:
CategoryTheory.CategoryStruct.comp ((F.map g).app ((F.obj m).obj X))
(CategoryTheory.CategoryStruct.comp ((F.obj n').map ((F.map f).app X)) ((F.μ m' n').app X)) = CategoryTheory.CategoryStruct.comp ((F.μ m n).app X) ((F.map (CategoryTheory.MonoidalCategory.tensorHom f g)).app X)
@[simp]
theorem
CategoryTheory.μ_naturalityₗ_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
{m : M}
{n : M}
{m' : M}
(f : m ⟶ m')
(X : C)
{Z : C}
(h : (F.obj (CategoryTheory.MonoidalCategory.tensorObj m' n)).obj X ⟶ Z)
:
CategoryTheory.CategoryStruct.comp ((F.obj n).map ((F.map f).app X))
(CategoryTheory.CategoryStruct.comp ((F.μ m' n).app X) h) = CategoryTheory.CategoryStruct.comp ((F.μ m n).app X)
(CategoryTheory.CategoryStruct.comp ((F.map (CategoryTheory.MonoidalCategory.whiskerRight f n)).app X) h)
@[simp]
theorem
CategoryTheory.μ_naturalityₗ
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
{m : M}
{n : M}
{m' : M}
(f : m ⟶ m')
(X : C)
:
CategoryTheory.CategoryStruct.comp ((F.obj n).map ((F.map f).app X)) ((F.μ m' n).app X) = CategoryTheory.CategoryStruct.comp ((F.μ m n).app X)
((F.map (CategoryTheory.MonoidalCategory.whiskerRight f n)).app X)
@[simp]
theorem
CategoryTheory.μ_naturalityᵣ_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
{m : M}
{n : M}
{n' : M}
(g : n ⟶ n')
(X : C)
{Z : C}
(h : (F.obj (CategoryTheory.MonoidalCategory.tensorObj m n')).obj X ⟶ Z)
:
CategoryTheory.CategoryStruct.comp ((F.map g).app ((F.obj m).obj X))
(CategoryTheory.CategoryStruct.comp ((F.μ m n').app X) h) = CategoryTheory.CategoryStruct.comp ((F.μ m n).app X)
(CategoryTheory.CategoryStruct.comp ((F.map (CategoryTheory.MonoidalCategory.whiskerLeft m g)).app X) h)
@[simp]
theorem
CategoryTheory.μ_naturalityᵣ
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
{m : M}
{n : M}
{n' : M}
(g : n ⟶ n')
(X : C)
:
CategoryTheory.CategoryStruct.comp ((F.map g).app ((F.obj m).obj X)) ((F.μ m n').app X) = CategoryTheory.CategoryStruct.comp ((F.μ m n).app X) ((F.map (CategoryTheory.MonoidalCategory.whiskerLeft m g)).app X)
@[simp]
theorem
CategoryTheory.μ_inv_naturalityₗ_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
{m : M}
{n : M}
{m' : M}
(f : m ⟶ m')
(X : C)
{Z : C}
(h : (F.obj n).obj ((F.obj m').obj X) ⟶ Z)
:
CategoryTheory.CategoryStruct.comp ((F.μIso m n).inv.app X)
(CategoryTheory.CategoryStruct.comp ((F.obj n).map ((F.map f).app X)) h) = CategoryTheory.CategoryStruct.comp ((F.map (CategoryTheory.MonoidalCategory.whiskerRight f n)).app X)
(CategoryTheory.CategoryStruct.comp ((F.μIso m' n).inv.app X) h)
@[simp]
theorem
CategoryTheory.μ_inv_naturalityₗ
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
{m : M}
{n : M}
{m' : M}
(f : m ⟶ m')
(X : C)
:
CategoryTheory.CategoryStruct.comp ((F.μIso m n).inv.app X) ((F.obj n).map ((F.map f).app X)) = CategoryTheory.CategoryStruct.comp ((F.map (CategoryTheory.MonoidalCategory.whiskerRight f n)).app X)
((F.μIso m' n).inv.app X)
@[simp]
theorem
CategoryTheory.μ_inv_naturalityᵣ_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
{m : M}
{n : M}
{n' : M}
(g : n ⟶ n')
(X : C)
{Z : C}
(h : (F.obj n').obj ((F.obj m).obj X) ⟶ Z)
:
CategoryTheory.CategoryStruct.comp ((F.μIso m n).inv.app X)
(CategoryTheory.CategoryStruct.comp ((F.map g).app ((F.obj m).obj X)) h) = CategoryTheory.CategoryStruct.comp ((F.map (CategoryTheory.MonoidalCategory.whiskerLeft m g)).app X)
(CategoryTheory.CategoryStruct.comp ((F.μIso m n').inv.app X) h)
@[simp]
theorem
CategoryTheory.μ_inv_naturalityᵣ
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
{m : M}
{n : M}
{n' : M}
(g : n ⟶ n')
(X : C)
:
CategoryTheory.CategoryStruct.comp ((F.μIso m n).inv.app X) ((F.map g).app ((F.obj m).obj X)) = CategoryTheory.CategoryStruct.comp ((F.map (CategoryTheory.MonoidalCategory.whiskerLeft m g)).app X)
((F.μIso m n').inv.app X)
theorem
CategoryTheory.left_unitality_app_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(n : M)
(X : C)
{Z : C}
(h : (F.obj n).obj X ⟶ Z)
:
CategoryTheory.CategoryStruct.comp ((F.obj n).map (F.ε.app X))
(CategoryTheory.CategoryStruct.comp ((F.μ (𝟙_ M) n).app X)
(CategoryTheory.CategoryStruct.comp ((F.map (CategoryTheory.MonoidalCategory.leftUnitor n).hom).app X) h)) = h
theorem
CategoryTheory.left_unitality_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(n : M)
(X : C)
:
CategoryTheory.CategoryStruct.comp ((F.obj n).map (F.ε.app X))
(CategoryTheory.CategoryStruct.comp ((F.μ (𝟙_ M) n).app X)
((F.map (CategoryTheory.MonoidalCategory.leftUnitor n).hom).app X)) = CategoryTheory.CategoryStruct.id ((F.obj n).obj ((𝟙_ (CategoryTheory.Functor C C)).obj X))
@[simp]
theorem
CategoryTheory.obj_ε_app_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(n : M)
(X : C)
{Z : C}
(h : (F.obj n).obj ((F.obj (𝟙_ M)).obj X) ⟶ Z)
:
CategoryTheory.CategoryStruct.comp ((F.obj n).map (F.ε.app X)) h = CategoryTheory.CategoryStruct.comp ((F.map (CategoryTheory.MonoidalCategory.leftUnitor n).inv).app X)
(CategoryTheory.CategoryStruct.comp ((F.μIso (𝟙_ M) n).inv.app X) h)
@[simp]
theorem
CategoryTheory.obj_ε_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(n : M)
(X : C)
:
(F.obj n).map (F.ε.app X) = CategoryTheory.CategoryStruct.comp ((F.map (CategoryTheory.MonoidalCategory.leftUnitor n).inv).app X)
((F.μIso (𝟙_ M) n).inv.app X)
@[simp]
theorem
CategoryTheory.obj_ε_inv_app_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(n : M)
(X : C)
{Z : C}
(h : (F.obj n).obj ((𝟙_ (CategoryTheory.Functor C C)).obj X) ⟶ Z)
:
CategoryTheory.CategoryStruct.comp ((F.obj n).map (F.εIso.inv.app X)) h = CategoryTheory.CategoryStruct.comp ((F.μ (𝟙_ M) n).app X)
(CategoryTheory.CategoryStruct.comp ((F.map (CategoryTheory.MonoidalCategory.leftUnitor n).hom).app X) h)
@[simp]
theorem
CategoryTheory.obj_ε_inv_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(n : M)
(X : C)
:
(F.obj n).map (F.εIso.inv.app X) = CategoryTheory.CategoryStruct.comp ((F.μ (𝟙_ M) n).app X)
((F.map (CategoryTheory.MonoidalCategory.leftUnitor n).hom).app X)
theorem
CategoryTheory.right_unitality_app_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(n : M)
(X : C)
{Z : C}
(h : (F.obj n).obj X ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (F.ε.app ((F.obj n).obj X))
(CategoryTheory.CategoryStruct.comp ((F.μ n (𝟙_ M)).app X)
(CategoryTheory.CategoryStruct.comp ((F.map (CategoryTheory.MonoidalCategory.rightUnitor n).hom).app X) h)) = h
theorem
CategoryTheory.right_unitality_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(n : M)
(X : C)
:
CategoryTheory.CategoryStruct.comp (F.ε.app ((F.obj n).obj X))
(CategoryTheory.CategoryStruct.comp ((F.μ n (𝟙_ M)).app X)
((F.map (CategoryTheory.MonoidalCategory.rightUnitor n).hom).app X)) = CategoryTheory.CategoryStruct.id ((𝟙_ (CategoryTheory.Functor C C)).obj ((F.obj n).obj X))
@[simp]
theorem
CategoryTheory.ε_app_obj
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(n : M)
(X : C)
:
F.ε.app ((F.obj n).obj X) = CategoryTheory.CategoryStruct.comp ((F.map (CategoryTheory.MonoidalCategory.rightUnitor n).inv).app X)
((F.μIso n (𝟙_ M)).inv.app X)
@[simp]
theorem
CategoryTheory.ε_inv_app_obj
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(n : M)
(X : C)
:
F.εIso.inv.app ((F.obj n).obj X) = CategoryTheory.CategoryStruct.comp ((F.μ n (𝟙_ M)).app X)
((F.map (CategoryTheory.MonoidalCategory.rightUnitor n).hom).app X)
theorem
CategoryTheory.associativity_app_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(m₁ : M)
(m₂ : M)
(m₃ : M)
(X : C)
{Z : C}
(h : (F.obj (CategoryTheory.MonoidalCategory.tensorObj m₁ (CategoryTheory.MonoidalCategory.tensorObj m₂ m₃))).obj X ⟶ Z)
:
CategoryTheory.CategoryStruct.comp ((F.obj m₃).map ((F.μ m₁ m₂).app X))
(CategoryTheory.CategoryStruct.comp ((F.μ (CategoryTheory.MonoidalCategory.tensorObj m₁ m₂) m₃).app X)
(CategoryTheory.CategoryStruct.comp ((F.map (CategoryTheory.MonoidalCategory.associator m₁ m₂ m₃).hom).app X)
h)) = CategoryTheory.CategoryStruct.comp ((F.μ m₂ m₃).app ((F.obj m₁).obj X))
(CategoryTheory.CategoryStruct.comp ((F.μ m₁ (CategoryTheory.MonoidalCategory.tensorObj m₂ m₃)).app X) h)
theorem
CategoryTheory.associativity_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(m₁ : M)
(m₂ : M)
(m₃ : M)
(X : C)
:
CategoryTheory.CategoryStruct.comp ((F.obj m₃).map ((F.μ m₁ m₂).app X))
(CategoryTheory.CategoryStruct.comp ((F.μ (CategoryTheory.MonoidalCategory.tensorObj m₁ m₂) m₃).app X)
((F.map (CategoryTheory.MonoidalCategory.associator m₁ m₂ m₃).hom).app X)) = CategoryTheory.CategoryStruct.comp ((F.μ m₂ m₃).app ((F.obj m₁).obj X))
((F.μ m₁ (CategoryTheory.MonoidalCategory.tensorObj m₂ m₃)).app X)
@[simp]
theorem
CategoryTheory.obj_μ_app_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(m₁ : M)
(m₂ : M)
(m₃ : M)
(X : C)
{Z : C}
(h : (F.obj m₃).obj ((F.obj (CategoryTheory.MonoidalCategory.tensorObj m₁ m₂)).obj X) ⟶ Z)
:
CategoryTheory.CategoryStruct.comp ((F.obj m₃).map ((F.μ m₁ m₂).app X)) h = CategoryTheory.CategoryStruct.comp ((F.μ m₂ m₃).app ((F.obj m₁).obj X))
(CategoryTheory.CategoryStruct.comp ((F.μ m₁ (CategoryTheory.MonoidalCategory.tensorObj m₂ m₃)).app X)
(CategoryTheory.CategoryStruct.comp ((F.map (CategoryTheory.MonoidalCategory.associator m₁ m₂ m₃).inv).app X)
(CategoryTheory.CategoryStruct.comp ((F.μIso (CategoryTheory.MonoidalCategory.tensorObj m₁ m₂) m₃).inv.app X)
h)))
@[simp]
theorem
CategoryTheory.obj_μ_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(m₁ : M)
(m₂ : M)
(m₃ : M)
(X : C)
:
(F.obj m₃).map ((F.μ m₁ m₂).app X) = CategoryTheory.CategoryStruct.comp ((F.μ m₂ m₃).app ((F.obj m₁).obj X))
(CategoryTheory.CategoryStruct.comp ((F.μ m₁ (CategoryTheory.MonoidalCategory.tensorObj m₂ m₃)).app X)
(CategoryTheory.CategoryStruct.comp ((F.map (CategoryTheory.MonoidalCategory.associator m₁ m₂ m₃).inv).app X)
((F.μIso (CategoryTheory.MonoidalCategory.tensorObj m₁ m₂) m₃).inv.app X)))
@[simp]
theorem
CategoryTheory.obj_μ_inv_app_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(m₁ : M)
(m₂ : M)
(m₃ : M)
(X : C)
{Z : C}
(h : (F.obj m₃).obj ((CategoryTheory.MonoidalCategory.tensorObj (F.obj m₁) (F.obj m₂)).obj X) ⟶ Z)
:
CategoryTheory.CategoryStruct.comp ((F.obj m₃).map ((F.μIso m₁ m₂).inv.app X)) h = CategoryTheory.CategoryStruct.comp ((F.μ (CategoryTheory.MonoidalCategory.tensorObj m₁ m₂) m₃).app X)
(CategoryTheory.CategoryStruct.comp ((F.map (CategoryTheory.MonoidalCategory.associator m₁ m₂ m₃).hom).app X)
(CategoryTheory.CategoryStruct.comp ((F.μIso m₁ (CategoryTheory.MonoidalCategory.tensorObj m₂ m₃)).inv.app X)
(CategoryTheory.CategoryStruct.comp ((F.μIso m₂ m₃).inv.app ((F.obj m₁).obj X)) h)))
@[simp]
theorem
CategoryTheory.obj_μ_inv_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(m₁ : M)
(m₂ : M)
(m₃ : M)
(X : C)
:
(F.obj m₃).map ((F.μIso m₁ m₂).inv.app X) = CategoryTheory.CategoryStruct.comp ((F.μ (CategoryTheory.MonoidalCategory.tensorObj m₁ m₂) m₃).app X)
(CategoryTheory.CategoryStruct.comp ((F.map (CategoryTheory.MonoidalCategory.associator m₁ m₂ m₃).hom).app X)
(CategoryTheory.CategoryStruct.comp ((F.μIso m₁ (CategoryTheory.MonoidalCategory.tensorObj m₂ m₃)).inv.app X)
((F.μIso m₂ m₃).inv.app ((F.obj m₁).obj X))))
@[simp]
theorem
CategoryTheory.obj_zero_map_μ_app_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
{m : M}
{X : C}
{Y : C}
(f : X ⟶ (F.obj m).obj Y)
{Z : C}
(h : (F.obj (CategoryTheory.MonoidalCategory.tensorObj m (𝟙_ M))).obj Y ⟶ Z)
:
CategoryTheory.CategoryStruct.comp ((F.obj (𝟙_ M)).map f)
(CategoryTheory.CategoryStruct.comp ((F.μ m (𝟙_ M)).app Y) h) = CategoryTheory.CategoryStruct.comp (F.εIso.inv.app X)
(CategoryTheory.CategoryStruct.comp f
(CategoryTheory.CategoryStruct.comp ((F.map (CategoryTheory.MonoidalCategory.rightUnitor m).inv).app Y) h))
@[simp]
theorem
CategoryTheory.obj_zero_map_μ_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
{m : M}
{X : C}
{Y : C}
(f : X ⟶ (F.obj m).obj Y)
:
CategoryTheory.CategoryStruct.comp ((F.obj (𝟙_ M)).map f) ((F.μ m (𝟙_ M)).app Y) = CategoryTheory.CategoryStruct.comp (F.εIso.inv.app X)
(CategoryTheory.CategoryStruct.comp f ((F.map (CategoryTheory.MonoidalCategory.rightUnitor m).inv).app Y))
@[simp]
theorem
CategoryTheory.obj_μ_zero_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(m₁ : M)
(m₂ : M)
(X : C)
:
CategoryTheory.CategoryStruct.comp ((F.μ (𝟙_ M) m₂).app ((F.obj m₁).obj X))
(CategoryTheory.CategoryStruct.comp ((F.μ m₁ (CategoryTheory.MonoidalCategory.tensorObj (𝟙_ M) m₂)).app X)
(CategoryTheory.CategoryStruct.comp ((F.map (CategoryTheory.MonoidalCategory.associator m₁ (𝟙_ M) m₂).inv).app X)
((F.μIso (CategoryTheory.MonoidalCategory.tensorObj m₁ (𝟙_ M)) m₂).inv.app X))) = CategoryTheory.CategoryStruct.comp ((F.μ (𝟙_ M) m₂).app ((F.obj m₁).obj X))
(CategoryTheory.CategoryStruct.comp
((F.map (CategoryTheory.MonoidalCategory.leftUnitor m₂).hom).app ((F.obj m₁).obj X))
((F.obj m₂).map ((F.map (CategoryTheory.MonoidalCategory.rightUnitor m₁).inv).app X)))
@[simp]
theorem
CategoryTheory.unitOfTensorIsoUnit_inv_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(m : M)
(n : M)
(h : CategoryTheory.MonoidalCategory.tensorObj m n ≅ 𝟙_ M)
(X : C)
:
(CategoryTheory.unitOfTensorIsoUnit F m n h).inv.app X = CategoryTheory.CategoryStruct.comp (F.ε.app X)
(CategoryTheory.CategoryStruct.comp ((F.map h.inv).app X) ((F.μIso m n).inv.app X))
@[simp]
theorem
CategoryTheory.unitOfTensorIsoUnit_hom_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(m : M)
(n : M)
(h : CategoryTheory.MonoidalCategory.tensorObj m n ≅ 𝟙_ M)
(X : C)
:
(CategoryTheory.unitOfTensorIsoUnit F m n h).hom.app X = CategoryTheory.CategoryStruct.comp ((F.μ m n).app X)
(CategoryTheory.CategoryStruct.comp ((F.map h.hom).app X) (F.εIso.inv.app X))
noncomputable def
CategoryTheory.unitOfTensorIsoUnit
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(m : M)
(n : M)
(h : CategoryTheory.MonoidalCategory.tensorObj m n ≅ 𝟙_ M)
:
(F.obj m).comp (F.obj n) ≅ CategoryTheory.Functor.id C
If m ⊗ n ≅ 𝟙_M
, then F.obj m
is a left inverse of F.obj n
.
Equations
- CategoryTheory.unitOfTensorIsoUnit F m n h = F.μIso m n ≪≫ F.mapIso h ≪≫ F.εIso.symm
Instances For
@[simp]
theorem
CategoryTheory.equivOfTensorIsoUnit_counitIso
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(m : M)
(n : M)
(h₁ : CategoryTheory.MonoidalCategory.tensorObj m n ≅ 𝟙_ M)
(h₂ : CategoryTheory.MonoidalCategory.tensorObj n m ≅ 𝟙_ M)
(H : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.whiskerRight h₁.hom m)
(CategoryTheory.MonoidalCategory.leftUnitor m).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator m n m).hom
(CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.whiskerLeft m h₂.hom)
(CategoryTheory.MonoidalCategory.rightUnitor m).hom))
:
(CategoryTheory.equivOfTensorIsoUnit F m n h₁ h₂ H).counitIso = CategoryTheory.unitOfTensorIsoUnit F n m h₂
@[simp]
theorem
CategoryTheory.equivOfTensorIsoUnit_inverse
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(m : M)
(n : M)
(h₁ : CategoryTheory.MonoidalCategory.tensorObj m n ≅ 𝟙_ M)
(h₂ : CategoryTheory.MonoidalCategory.tensorObj n m ≅ 𝟙_ M)
(H : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.whiskerRight h₁.hom m)
(CategoryTheory.MonoidalCategory.leftUnitor m).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator m n m).hom
(CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.whiskerLeft m h₂.hom)
(CategoryTheory.MonoidalCategory.rightUnitor m).hom))
:
(CategoryTheory.equivOfTensorIsoUnit F m n h₁ h₂ H).inverse = F.obj n
@[simp]
theorem
CategoryTheory.equivOfTensorIsoUnit_unitIso
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(m : M)
(n : M)
(h₁ : CategoryTheory.MonoidalCategory.tensorObj m n ≅ 𝟙_ M)
(h₂ : CategoryTheory.MonoidalCategory.tensorObj n m ≅ 𝟙_ M)
(H : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.whiskerRight h₁.hom m)
(CategoryTheory.MonoidalCategory.leftUnitor m).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator m n m).hom
(CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.whiskerLeft m h₂.hom)
(CategoryTheory.MonoidalCategory.rightUnitor m).hom))
:
(CategoryTheory.equivOfTensorIsoUnit F m n h₁ h₂ H).unitIso = (CategoryTheory.unitOfTensorIsoUnit F m n h₁).symm
@[simp]
theorem
CategoryTheory.equivOfTensorIsoUnit_functor
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(m : M)
(n : M)
(h₁ : CategoryTheory.MonoidalCategory.tensorObj m n ≅ 𝟙_ M)
(h₂ : CategoryTheory.MonoidalCategory.tensorObj n m ≅ 𝟙_ M)
(H : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.whiskerRight h₁.hom m)
(CategoryTheory.MonoidalCategory.leftUnitor m).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator m n m).hom
(CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.whiskerLeft m h₂.hom)
(CategoryTheory.MonoidalCategory.rightUnitor m).hom))
:
(CategoryTheory.equivOfTensorIsoUnit F m n h₁ h₂ H).functor = F.obj m
noncomputable def
CategoryTheory.equivOfTensorIsoUnit
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{M : Type u_1}
[CategoryTheory.Category.{u_2, u_1} M]
[CategoryTheory.MonoidalCategory M]
(F : CategoryTheory.MonoidalFunctor M (CategoryTheory.Functor C C))
(m : M)
(n : M)
(h₁ : CategoryTheory.MonoidalCategory.tensorObj m n ≅ 𝟙_ M)
(h₂ : CategoryTheory.MonoidalCategory.tensorObj n m ≅ 𝟙_ M)
(H : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.whiskerRight h₁.hom m)
(CategoryTheory.MonoidalCategory.leftUnitor m).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator m n m).hom
(CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.whiskerLeft m h₂.hom)
(CategoryTheory.MonoidalCategory.rightUnitor m).hom))
:
C ≌ C
If m ⊗ n ≅ 𝟙_M
and n ⊗ m ≅ 𝟙_M
(subject to some commuting constraints),
then F.obj m
and F.obj n
forms a self-equivalence of C
.
Equations
- One or more equations did not get rendered due to their size.