If C
is braided, so is Cᵒᵖ
. #
Todo: we should also do Cᵐᵒᵖ
.
instance
instBraidedCategoryOpposite
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.BraidedCategory C]
:
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
CategoryTheory.BraidedCategory.unop_tensor_μ
{C : Type u_2}
[CategoryTheory.Category.{u_3, u_2} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.BraidedCategory C]
(X : Cᵒᵖ)
(Y : Cᵒᵖ)
(W : Cᵒᵖ)
(Z : Cᵒᵖ)
:
(CategoryTheory.tensor_μ Cᵒᵖ (X, W) (Y, Z)).unop = CategoryTheory.tensor_μ C (Opposite.unop X, Opposite.unop Y) (Opposite.unop W, Opposite.unop Z)
@[simp]
theorem
CategoryTheory.BraidedCategory.op_tensor_μ
{C : Type u_2}
[CategoryTheory.Category.{u_3, u_2} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.BraidedCategory C]
(X : C)
(Y : C)
(W : C)
(Z : C)
:
(CategoryTheory.tensor_μ C (X, W) (Y, Z)).op = CategoryTheory.tensor_μ Cᵒᵖ (Opposite.op X, Opposite.op Y) (Opposite.op W, Opposite.op Z)