Documentation

Mathlib.CategoryTheory.Localization.Triangulated

Localization of triangulated categories #

If L : C ⥤ D is a localization functor for a class of morphisms W that is compatible with the triangulation on the category C and admits a left calculus of fractions, it is shown in this file that D can be equipped with a pretriangulated category structure, and that it is triangulated.

References #

Given W is a class of morphisms in a pretriangulated category C, this is the condition that W is compatible with the triangulation on C.

Instances
    theorem CategoryTheory.MorphismProperty.IsCompatibleWithTriangulation.compatible_with_triangulation {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.HasShift C ] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [∀ (n : ), (CategoryTheory.shiftFunctor C n).Additive] [CategoryTheory.Pretriangulated C] {W : CategoryTheory.MorphismProperty C} [self : W.IsCompatibleWithTriangulation] (T₁ : CategoryTheory.Pretriangulated.Triangle C) (T₂ : CategoryTheory.Pretriangulated.Triangle C) :
    T₁ CategoryTheory.Pretriangulated.distinguishedTrianglesT₂ CategoryTheory.Pretriangulated.distinguishedTriangles∀ (a : T₁.obj₁ T₂.obj₁) (b : T₁.obj₂ T₂.obj₂), W aW bCategoryTheory.CategoryStruct.comp T₁.mor₁ b = CategoryTheory.CategoryStruct.comp a T₂.mor₁∃ (c : T₁.obj₃ T₂.obj₃) (_ : W c), CategoryTheory.CategoryStruct.comp T₁.mor₂ c = CategoryTheory.CategoryStruct.comp b T₂.mor₂ CategoryTheory.CategoryStruct.comp T₁.mor₃ ((CategoryTheory.shiftFunctor C 1).map a) = CategoryTheory.CategoryStruct.comp c T₂.mor₃

    Given a functor C ⥤ D from a pretriangulated category, this is the set of triangles in D that are in the essential image of distinguished triangles of C.

    Equations
    Instances For
      theorem CategoryTheory.Functor.complete_distinguished_essImageDistTriang_morphism {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] (L : CategoryTheory.Functor C D) [CategoryTheory.HasShift C ] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [∀ (n : ), (CategoryTheory.shiftFunctor C n).Additive] [CategoryTheory.Pretriangulated C] [CategoryTheory.HasShift D ] [L.CommShift ] (H : ∀ (T₁' T₂' : CategoryTheory.Pretriangulated.Triangle C), T₁' CategoryTheory.Pretriangulated.distinguishedTrianglesT₂' CategoryTheory.Pretriangulated.distinguishedTriangles∀ (a : L.obj T₁'.obj₁ L.obj T₂'.obj₁) (b : L.obj T₁'.obj₂ L.obj T₂'.obj₂), CategoryTheory.CategoryStruct.comp (L.map T₁'.mor₁) b = CategoryTheory.CategoryStruct.comp a (L.map T₂'.mor₁)∃ (φ : L.mapTriangle.obj T₁' L.mapTriangle.obj T₂'), φ.hom₁ = a φ.hom₂ = b) (T₁ : CategoryTheory.Pretriangulated.Triangle D) (T₂ : CategoryTheory.Pretriangulated.Triangle D) (hT₁ : T₁ L.essImageDistTriang) (hT₂ : T₂ L.essImageDistTriang) (a : T₁.obj₁ T₂.obj₁) (b : T₁.obj₂ T₂.obj₂) (fac : CategoryTheory.CategoryStruct.comp T₁.mor₁ b = CategoryTheory.CategoryStruct.comp a T₂.mor₁) :
      theorem CategoryTheory.Triangulated.Localization.complete_distinguished_triangle_morphism {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_3, u_2} D] (L : CategoryTheory.Functor C D) [CategoryTheory.HasShift C ] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [∀ (n : ), (CategoryTheory.shiftFunctor C n).Additive] [CategoryTheory.Pretriangulated C] [CategoryTheory.HasShift D ] [L.CommShift ] (W : CategoryTheory.MorphismProperty C) [L.IsLocalization W] [W.IsCompatibleWithTriangulation] [W.HasLeftCalculusOfFractions] (T₁ : CategoryTheory.Pretriangulated.Triangle D) (T₂ : CategoryTheory.Pretriangulated.Triangle D) (hT₁ : T₁ L.essImageDistTriang) (hT₂ : T₂ L.essImageDistTriang) (a : T₁.obj₁ T₂.obj₁) (b : T₁.obj₂ T₂.obj₂) (fac : CategoryTheory.CategoryStruct.comp T₁.mor₁ b = CategoryTheory.CategoryStruct.comp a T₂.mor₁) :

      The pretriangulated structure on the localized category.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        Equations
        • =