Documentation

Mathlib.CategoryTheory.Functor.OfSequence

Functors from the category of the ordered set #

In this file, we provide a constructor Functor.ofSequence for functors ℕ ⥤ C which takes as an input a sequence of morphisms f : X n ⟶ X (n + 1) for all n : ℕ.

We also provide a constructor NatTrans.ofSequence for natural transformations between functors ℕ ⥤ C which allows to check the naturality condition only for morphisms n ⟶ n + 1.

def CategoryTheory.Functor.OfSequence.map {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X : C} :
((n : ) → X n X (n + 1))(i j : ) → i j(X i X j)

The morphism X i ⟶ X j obtained by composing morphisms of the form X n ⟶ X (n + 1) when i ≤ j.

Equations
Instances For
    theorem CategoryTheory.Functor.OfSequence.map_le_succ {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X : C} (f : (n : ) → X n X (n + 1)) (i : ) :
    @[simp]
    theorem CategoryTheory.Functor.ofSequence_obj {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X : C} (f : (n : ) → X n X (n + 1)) :
    ∀ (a : ), (CategoryTheory.Functor.ofSequence f).obj a = X a

    The functor ℕ ⥤ C constructed from a sequence of morphisms f : X n ⟶ X (n + 1) for all n : ℕ.

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.NatTrans.ofSequence_app {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {F : CategoryTheory.Functor C} {G : CategoryTheory.Functor C} (app : (n : ) → F.obj n G.obj n) (naturality : ∀ (n : ), CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.homOfLE )) (app (n + 1)) = CategoryTheory.CategoryStruct.comp (app n) (G.map (CategoryTheory.homOfLE ))) (n : ) :
      (CategoryTheory.NatTrans.ofSequence app naturality).app n = app n

      Constructor for natural transformations F ⟶ G in ℕ ⥤ C which takes as inputs the morphisms F.obj n ⟶ G.obj n for all n : ℕ and the naturality condition only for morphisms of the form n ⟶ n + 1.

      Equations
      Instances For