Documentation

Mathlib.CategoryTheory.EffectiveEpi.Enough

Effectively enough objects in the image of a functor #

We define the class F.EffectivelyEnough on a functor F : C ⥤ D which says that for every object in D, there exists an effective epi to it from an object in the image of F.

An effective presentation of an object X with respect to a functor F is the data of an effective epimorphism of the form F.obj p ⟶ X.

  • p : C

    The object of C giving the source of the effective epi

  • f : F.obj self.p X

    The morphism F.obj p ⟶ X

  • effectiveEpi : CategoryTheory.EffectiveEpi self.f

    f is an effective epi

Instances For

    D has *effectively enough objects with respect to the functor F if every object has an effective presentation.

    • presentation : ∀ (X : D), Nonempty (F.EffectivePresentation X)

      For every X : D, there exists an object p of C with an effective epi F.obj p ⟶ X.

    Instances
      theorem CategoryTheory.Functor.EffectivelyEnough.presentation {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] {F : CategoryTheory.Functor C D} [self : F.EffectivelyEnough] (X : D) :
      Nonempty (F.EffectivePresentation X)

      For every X : D, there exists an object p of C with an effective epi F.obj p ⟶ X.

      noncomputable def CategoryTheory.Functor.effectiveEpiOverObj {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] (F : CategoryTheory.Functor C D) [F.EffectivelyEnough] (X : D) :
      D

      F.effectiveEpiOverObj X provides an arbitrarily chosen object in the image of F equipped with an effective epimorphism F.effectiveEpiOver : F.effectiveEpiOverObj X ⟶ X.

      Equations
      • F.effectiveEpiOverObj X = F.obj .some.p
      Instances For
        noncomputable def CategoryTheory.Functor.effectiveEpiOver {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] (F : CategoryTheory.Functor C D) [F.EffectivelyEnough] (X : D) :
        F.effectiveEpiOverObj X X

        The epimorphism F.effectiveEpiOver : F.effectiveEpiOverObj X ⟶ X from the arbitrarily chosen object in the image of F over X.

        Equations
        • F.effectiveEpiOver X = .some.f
        Instances For
          def CategoryTheory.Functor.equivalenceEffectivePresentation {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] (e : C D) (X : D) :
          e.functor.EffectivePresentation X

          An effective presentation of an object with respect to an equivalence of categories.

          Equations
          Instances For