Composition of effective epimorphisms #
This file provides EffectiveEpi
instances for certain compositions.
noncomputable def
CategoryTheory.effectiveEpiFamilyStructCompOfEffectiveEpiSplitEpi'
{C : Type u_1}
[CategoryTheory.Category.{u_3, u_1} C]
{α : Type u_2}
{B : C}
{X : α → C}
{Y : α → C}
(f : (a : α) → X a ⟶ B)
(g : (a : α) → Y a ⟶ X a)
(i : (a : α) → X a ⟶ Y a)
(hi : ∀ (a : α), CategoryTheory.CategoryStruct.comp (i a) (g a) = CategoryTheory.CategoryStruct.id (X a))
[CategoryTheory.EffectiveEpiFamily X f]
:
CategoryTheory.EffectiveEpiFamilyStruct Y fun (a : α) => CategoryTheory.CategoryStruct.comp (g a) (f a)
An effective epi family precomposed by a family of split epis is effective epimorphic.
This version takes an explicit section to the split epis, and is mainly used to define
effectiveEpiStructCompOfEffectiveEpiSplitEpi
,
which takes a IsSplitEpi
instance instead.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
CategoryTheory.effectiveEpiFamilyStructCompOfEffectiveEpiSplitEpi
{C : Type u_1}
[CategoryTheory.Category.{u_3, u_1} C]
{α : Type u_2}
{B : C}
{X : α → C}
{Y : α → C}
(f : (a : α) → X a ⟶ B)
(g : (a : α) → Y a ⟶ X a)
[∀ (a : α), CategoryTheory.IsSplitEpi (g a)]
[CategoryTheory.EffectiveEpiFamily X f]
:
CategoryTheory.EffectiveEpiFamilyStruct Y fun (a : α) => CategoryTheory.CategoryStruct.comp (g a) (f a)
An effective epi family precomposed with a family of split epis is effective epimorphic.
Equations
Instances For
instance
CategoryTheory.instEffectiveEpiFamilyCompOfIsSplitEpi
{C : Type u_1}
[CategoryTheory.Category.{u_3, u_1} C]
{α : Type u_2}
{B : C}
{X : α → C}
{Y : α → C}
(f : (a : α) → X a ⟶ B)
(g : (a : α) → Y a ⟶ X a)
[∀ (a : α), CategoryTheory.IsSplitEpi (g a)]
[CategoryTheory.EffectiveEpiFamily X f]
:
CategoryTheory.EffectiveEpiFamily Y fun (a : α) => CategoryTheory.CategoryStruct.comp (g a) (f a)
Equations
- ⋯ = ⋯
instance
CategoryTheory.IsSplitEpi.EffectiveEpi
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
{B : C}
{X : C}
(f : X ⟶ B)
[CategoryTheory.IsSplitEpi f]
:
Equations
- ⋯ = ⋯
noncomputable def
CategoryTheory.effectiveEpiFamilyStructOfComp
{C : Type u_2}
[CategoryTheory.Category.{u_4, u_2} C]
{I : Type u_3}
{Z : I → C}
{Y : I → C}
{X : C}
(g : (i : I) → Z i ⟶ Y i)
(f : (i : I) → Y i ⟶ X)
[CategoryTheory.EffectiveEpiFamily Z fun (i : I) => CategoryTheory.CategoryStruct.comp (g i) (f i)]
[∀ (i : I), CategoryTheory.Epi (g i)]
:
If a family of morphisms with fixed target, precomposed by a family of epis is effective epimorphic, then the original family is as well.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.effectiveEpiFamily_of_effectiveEpi_epi_comp
{C : Type u_1}
[CategoryTheory.Category.{u_3, u_1} C]
{α : Type u_2}
{B : C}
{X : α → C}
{Y : α → C}
(f : (a : α) → X a ⟶ B)
(g : (a : α) → Y a ⟶ X a)
[∀ (a : α), CategoryTheory.Epi (g a)]
[CategoryTheory.EffectiveEpiFamily Y fun (a : α) => CategoryTheory.CategoryStruct.comp (g a) (f a)]
:
theorem
CategoryTheory.effectiveEpi_of_effectiveEpi_epi_comp
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
{B : C}
{X : C}
{Y : C}
(f : X ⟶ B)
(g : Y ⟶ X)
[CategoryTheory.Epi g]
[CategoryTheory.EffectiveEpi (CategoryTheory.CategoryStruct.comp g f)]
:
theorem
CategoryTheory.effectiveEpiFamilyStructCompIso_aux
{C : Type u_1}
[CategoryTheory.Category.{u_3, u_1} C]
{B : C}
{B' : C}
{α : Type u_2}
(X : α → C)
(π : (a : α) → X a ⟶ B)
(i : B ⟶ B')
{W : C}
(e : (a : α) → X a ⟶ W)
(h : ∀ {Z : C} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂),
CategoryTheory.CategoryStruct.comp g₁ (CategoryTheory.CategoryStruct.comp (π a₁) i) = CategoryTheory.CategoryStruct.comp g₂ (CategoryTheory.CategoryStruct.comp (π a₂) i) →
CategoryTheory.CategoryStruct.comp g₁ (e a₁) = CategoryTheory.CategoryStruct.comp g₂ (e a₂))
{Z : C}
(a₁ : α)
(a₂ : α)
(g₁ : Z ⟶ X a₁)
(g₂ : Z ⟶ X a₂)
(hg : CategoryTheory.CategoryStruct.comp g₁ (π a₁) = CategoryTheory.CategoryStruct.comp g₂ (π a₂))
:
CategoryTheory.CategoryStruct.comp g₁ (e a₁) = CategoryTheory.CategoryStruct.comp g₂ (e a₂)
noncomputable def
CategoryTheory.effectiveEpiFamilyStructCompIso
{C : Type u_1}
[CategoryTheory.Category.{u_3, u_1} C]
{B : C}
{B' : C}
{α : Type u_2}
(X : α → C)
(π : (a : α) → X a ⟶ B)
[CategoryTheory.EffectiveEpiFamily X π]
(i : B ⟶ B')
[CategoryTheory.IsIso i]
:
CategoryTheory.EffectiveEpiFamilyStruct X fun (a : α) => CategoryTheory.CategoryStruct.comp (π a) i
An effective epi family followed by an iso is an effective epi family.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
CategoryTheory.instEffectiveEpiFamilyComp
{C : Type u_1}
[CategoryTheory.Category.{u_3, u_1} C]
{B : C}
{B' : C}
{α : Type u_2}
(X : α → C)
(π : (a : α) → X a ⟶ B)
[CategoryTheory.EffectiveEpiFamily X π]
(i : B ⟶ B')
[CategoryTheory.IsIso i]
:
CategoryTheory.EffectiveEpiFamily X fun (a : α) => CategoryTheory.CategoryStruct.comp (π a) i
Equations
- ⋯ = ⋯