Countable categories #
A category is countable in this sense if it has countably many objects and countably many morphisms.
Equations
- ⋯ = ⋯
theorem
CategoryTheory.CountableCategory.countableObj
{J : Type u_1}
[CategoryTheory.Category.{u_2, u_1} J]
[self : CategoryTheory.CountableCategory J]
:
theorem
CategoryTheory.CountableCategory.countableHom
{J : Type u_1}
[CategoryTheory.Category.{u_2, u_1} J]
[self : CategoryTheory.CountableCategory J]
(j : J)
(j' : J)
:
Equations
- ⋯ = ⋯
@[reducible, inline]
abbrev
CategoryTheory.CountableCategory.ObjAsType
(α : Type u)
[CategoryTheory.Category.{v, u} α]
[CategoryTheory.CountableCategory α]
:
A countable category α
is equivalent to a category with objects in Type
.
Equations
Instances For
instance
CategoryTheory.CountableCategory.instCountableObjAsType
(α : Type u)
[CategoryTheory.Category.{v, u} α]
[CategoryTheory.CountableCategory α]
:
Equations
- ⋯ = ⋯
instance
CategoryTheory.CountableCategory.instCountableHomObjAsType
(α : Type u)
[CategoryTheory.Category.{v, u} α]
[CategoryTheory.CountableCategory α]
{i : CategoryTheory.CountableCategory.ObjAsType α}
{j : CategoryTheory.CountableCategory.ObjAsType α}
:
Equations
- ⋯ = ⋯
noncomputable def
CategoryTheory.CountableCategory.objAsTypeEquiv
(α : Type u)
[CategoryTheory.Category.{v, u} α]
[CategoryTheory.CountableCategory α]
:
The constructed category is indeed equivalent to α
.
Equations
- CategoryTheory.CountableCategory.objAsTypeEquiv α = (CategoryTheory.inducedFunctor ⇑(equivShrink α).symm).asEquivalence
Instances For
def
CategoryTheory.CountableCategory.HomAsType
(α : Type u)
[CategoryTheory.Category.{v, u} α]
[CategoryTheory.CountableCategory α]
:
A countable category α
is equivalent to a small category with objects in Type
.
Equations
Instances For
instance
CategoryTheory.CountableCategory.instCountableHomAsType
(α : Type u)
[CategoryTheory.Category.{v, u} α]
[CategoryTheory.CountableCategory α]
:
Equations
- ⋯ = ⋯
instance
CategoryTheory.CountableCategory.instCountableHomHomAsType
(α : Type u)
[CategoryTheory.Category.{v, u} α]
[CategoryTheory.CountableCategory α]
{i : CategoryTheory.CountableCategory.HomAsType α}
{j : CategoryTheory.CountableCategory.HomAsType α}
:
Equations
- ⋯ = ⋯
noncomputable def
CategoryTheory.CountableCategory.homAsTypeEquiv
(α : Type u)
[CategoryTheory.Category.{v, u} α]
[CategoryTheory.CountableCategory α]
:
The constructed category is indeed equivalent to α
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
CategoryTheory.instCountableCategoryOfFinCategory
(α : Type u_1)
[CategoryTheory.Category.{u_1, u_1} α]
[CategoryTheory.FinCategory α]
:
Equations
- ⋯ = ⋯
instance
CategoryTheory.countableCategoryOpposite
{J : Type u_1}
[CategoryTheory.Category.{u_2, u_1} J]
[CategoryTheory.CountableCategory J]
:
The opposite of a countable category is countable.
Equations
- ⋯ = ⋯
instance
CategoryTheory.countableCategoryUlift
{J : Type v}
[CategoryTheory.Category.{u_1, v} J]
[CategoryTheory.CountableCategory J]
:
Applying ULift
to morphisms and objects of a category preserves countability.
Equations
- ⋯ = ⋯