Conjugate morphisms by isomorphisms #
An isomorphism α : X ≅ Y
defines
- a monoid isomorphism
CategoryTheory.Iso.conj : End X ≃* End Y
byα.conj f = α.inv ≫ f ≫ α.hom
; - a group isomorphism
CategoryTheory.Iso.conjAut : Aut X ≃* Aut Y
byα.conjAut f = α.symm ≪≫ f ≪≫ α
.
For completeness, we also define
CategoryTheory.Iso.homCongr : (X ≅ X₁) → (Y ≅ Y₁) → (X ⟶ Y) ≃ (X₁ ⟶ Y₁)
,
cf. Equiv.arrowCongr
,
and CategoryTheory.Iso.isoCongr : (f : X₁ ≅ X₂) → (g : Y₁ ≅ Y₂) → (X₁ ≅ Y₁) ≃ (X₂ ≅ Y₂)
.
If X
is isomorphic to X₁
and Y
is isomorphic to Y₁
, then
there is a natural bijection between X ⟶ Y
and X₁ ⟶ Y₁
. See also Equiv.arrowCongr
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If X
is isomorphic to X₁
and Y
is isomorphic to Y₁
, then
there is a bijection between X ≅ Y
and X₁ ≅ Y₁
.
Equations
Instances For
If X₁
is isomorphic to X₂
, then there is a bijection between X₁ ≅ Y
and X₂ ≅ Y
.
Equations
- f.isoCongrLeft = f.isoCongr (CategoryTheory.Iso.refl Y)
Instances For
If Y₁
is isomorphic to Y₂
, then there is a bijection between X ≅ Y₁
and X ≅ Y₂
.
Equations
- g.isoCongrRight = (CategoryTheory.Iso.refl X).isoCongr g
Instances For
An isomorphism between two objects defines a monoid isomorphism between their monoid of endomorphisms.
Equations
- α.conj = let __src := α.homCongr α; { toEquiv := __src, map_mul' := ⋯ }
Instances For
conj
defines a group isomorphisms between groups of automorphisms
Equations
- α.conjAut = (CategoryTheory.Aut.unitsEndEquivAut X).symm.trans ((Units.mapEquiv α.conj).trans (CategoryTheory.Aut.unitsEndEquivAut Y))