Functors from a groupoid into a monoidal closed category form a monoidal closed category. #
(Using the pointwise monoidal structure on the functor category.)
@[simp]
theorem
CategoryTheory.Functor.closedIhom_obj_obj
{D : Type u_1}
{C : Type u_2}
[CategoryTheory.Groupoid D]
[CategoryTheory.Category.{u_4, u_2} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.MonoidalClosed C]
(F : CategoryTheory.Functor D C)
(Y : CategoryTheory.Functor D C)
(X : D)
:
(F.closedIhom.obj Y).obj X = (CategoryTheory.ihom (F.obj X)).obj (Y.obj X)
@[simp]
theorem
CategoryTheory.Functor.closedIhom_map_app
{D : Type u_1}
{C : Type u_2}
[CategoryTheory.Groupoid D]
[CategoryTheory.Category.{u_4, u_2} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.MonoidalClosed C]
(F : CategoryTheory.Functor D C)
:
∀ {X Y : CategoryTheory.Functor D C} (g : X ⟶ Y) (X_1 : D),
(F.closedIhom.map g).app X_1 = (CategoryTheory.ihom (F.obj X_1)).map (g.app X_1)
@[simp]
theorem
CategoryTheory.Functor.closedIhom_obj_map
{D : Type u_1}
{C : Type u_2}
[CategoryTheory.Groupoid D]
[CategoryTheory.Category.{u_4, u_2} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.MonoidalClosed C]
(F : CategoryTheory.Functor D C)
(Y : CategoryTheory.Functor D C)
:
∀ {X Y_1 : D} (f : X ⟶ Y_1),
(F.closedIhom.obj Y).map f = CategoryTheory.CategoryStruct.comp
((CategoryTheory.MonoidalClosed.pre (CategoryTheory.inv (F.map f))).app (Y.obj X))
((CategoryTheory.ihom (F.obj Y_1)).map (Y.map f))
def
CategoryTheory.Functor.closedIhom
{D : Type u_1}
{C : Type u_2}
[CategoryTheory.Groupoid D]
[CategoryTheory.Category.{u_4, u_2} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.MonoidalClosed C]
(F : CategoryTheory.Functor D C)
:
Auxiliary definition for CategoryTheory.Functor.closed
.
The internal hom functor F ⟶[C] -
Equations
- F.closedIhom = ((CategoryTheory.whiskeringRight₂ D Cᵒᵖ C C).obj CategoryTheory.MonoidalClosed.internalHom).obj ((CategoryTheory.Groupoid.invFunctor D).comp F.op)
Instances For
@[simp]
theorem
CategoryTheory.Functor.closedUnit_app_app
{D : Type u_1}
{C : Type u_2}
[CategoryTheory.Groupoid D]
[CategoryTheory.Category.{u_4, u_2} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.MonoidalClosed C]
(F : CategoryTheory.Functor D C)
(G : CategoryTheory.Functor D C)
(X : D)
:
(F.closedUnit.app G).app X = (CategoryTheory.ihom.coev (F.obj X)).app (G.obj X)
def
CategoryTheory.Functor.closedUnit
{D : Type u_1}
{C : Type u_2}
[CategoryTheory.Groupoid D]
[CategoryTheory.Category.{u_4, u_2} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.MonoidalClosed C]
(F : CategoryTheory.Functor D C)
:
CategoryTheory.Functor.id (CategoryTheory.Functor D C) ⟶ (CategoryTheory.MonoidalCategory.tensorLeft F).comp F.closedIhom
Auxiliary definition for CategoryTheory.Functor.closed
.
The unit for the adjunction (tensorLeft F) ⊣ (ihom F)
.
Equations
- F.closedUnit = { app := fun (G : CategoryTheory.Functor D C) => { app := fun (X : D) => (CategoryTheory.ihom.coev (F.obj X)).app (G.obj X), naturality := ⋯ }, naturality := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.Functor.closedCounit_app_app
{D : Type u_1}
{C : Type u_2}
[CategoryTheory.Groupoid D]
[CategoryTheory.Category.{u_4, u_2} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.MonoidalClosed C]
(F : CategoryTheory.Functor D C)
(G : CategoryTheory.Functor D C)
(X : D)
:
(F.closedCounit.app G).app X = (CategoryTheory.ihom.ev (F.obj X)).app (G.obj X)
def
CategoryTheory.Functor.closedCounit
{D : Type u_1}
{C : Type u_2}
[CategoryTheory.Groupoid D]
[CategoryTheory.Category.{u_4, u_2} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.MonoidalClosed C]
(F : CategoryTheory.Functor D C)
:
F.closedIhom.comp (CategoryTheory.MonoidalCategory.tensorLeft F) ⟶ CategoryTheory.Functor.id (CategoryTheory.Functor D C)
Auxiliary definition for CategoryTheory.Functor.closed
.
The counit for the adjunction (tensorLeft F) ⊣ (ihom F)
.
Equations
- F.closedCounit = { app := fun (G : CategoryTheory.Functor D C) => { app := fun (X : D) => (CategoryTheory.ihom.ev (F.obj X)).app (G.obj X), naturality := ⋯ }, naturality := ⋯ }
Instances For
instance
CategoryTheory.Functor.closed
{D : Type u_1}
{C : Type u_2}
[CategoryTheory.Groupoid D]
[CategoryTheory.Category.{u_4, u_2} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.MonoidalClosed C]
(F : CategoryTheory.Functor D C)
:
If C
is a monoidal closed category and D
is a groupoid, then every functor F : D ⥤ C
is
closed in the functor category F : D ⥤ C
with the pointwise monoidal structure.
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
CategoryTheory.Functor.monoidalClosed_closed_adj
{D : Type u_1}
{C : Type u_2}
[CategoryTheory.Groupoid D]
[CategoryTheory.Category.{u_4, u_2} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.MonoidalClosed C]
(X : CategoryTheory.Functor D C)
:
CategoryTheory.Closed.adj = CategoryTheory.Adjunction.mkOfUnitCounit
{ unit := X.closedUnit, counit := X.closedCounit, left_triangle := ⋯, right_triangle := ⋯ }
instance
CategoryTheory.Functor.monoidalClosed
{D : Type u_1}
{C : Type u_2}
[CategoryTheory.Groupoid D]
[CategoryTheory.Category.{u_4, u_2} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.MonoidalClosed C]
:
If C
is a monoidal closed category and D
is groupoid, then the functor category D ⥤ C
,
with the pointwise monoidal structure, is monoidal closed.
Equations
- CategoryTheory.Functor.monoidalClosed = { closed := inferInstance }
theorem
CategoryTheory.Functor.ihom_map
{D : Type u_1}
{C : Type u_2}
[CategoryTheory.Groupoid D]
[CategoryTheory.Category.{u_4, u_2} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.MonoidalClosed C]
(F : CategoryTheory.Functor D C)
{G : CategoryTheory.Functor D C}
{H : CategoryTheory.Functor D C}
(f : G ⟶ H)
:
(CategoryTheory.ihom F).map f = F.closedIhom.map f
theorem
CategoryTheory.Functor.ihom_ev_app
{D : Type u_1}
{C : Type u_2}
[CategoryTheory.Groupoid D]
[CategoryTheory.Category.{u_4, u_2} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.MonoidalClosed C]
(F : CategoryTheory.Functor D C)
(G : CategoryTheory.Functor D C)
:
(CategoryTheory.ihom.ev F).app G = F.closedCounit.app G
theorem
CategoryTheory.Functor.ihom_coev_app
{D : Type u_1}
{C : Type u_2}
[CategoryTheory.Groupoid D]
[CategoryTheory.Category.{u_4, u_2} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.MonoidalClosed C]
(F : CategoryTheory.Functor D C)
(G : CategoryTheory.Functor D C)
:
(CategoryTheory.ihom.coev F).app G = F.closedUnit.app G