Documentation

Mathlib.CategoryTheory.Bicategory.Functor.Oplax

Oplax functors #

An oplax functor F between bicategories B and C consists of

Main definitions #

structure CategoryTheory.OplaxFunctor (B : Type u₁) [CategoryTheory.Bicategory B] (C : Type u₂) [CategoryTheory.Bicategory C] extends CategoryTheory.PrelaxFunctor :
Type (max (max (max (max (max u₁ u₂) v₁) v₂) w₁) w₂)

An oplax functor F between bicategories B and C consists of a function between objects F.obj, a function between 1-morphisms F.map, and a function between 2-morphisms F.map₂.

Unlike functors between categories, F.map do not need to strictly commute with the composition, and do not need to strictly preserve the identity. Instead, there are specified 2-morphisms F.map (𝟙 a) ⟶ 𝟙 (F.obj a) and F.map (f ≫ g) ⟶ F.map f ≫ F.map g.

F.map₂ strictly commute with compositions and preserve the identity. They also preserve the associator, the left unitor, and the right unitor modulo some adjustments of domains and codomains of 2-morphisms.

Instances For
    @[simp]
    theorem CategoryTheory.OplaxFunctor.mapComp_naturality_left {B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.OplaxFunctor B C) {a : B} {b : B} {c : B} {f : a b} {f' : a b} (η : f f') (g : b c) :
    @[simp]
    theorem CategoryTheory.OplaxFunctor.mapComp_naturality_right {B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.OplaxFunctor B C) {a : B} {b : B} {c : B} (f : a b) {g : b c} {g' : b c} (η : g g') :
    CategoryTheory.CategoryStruct.comp (self.map₂ (CategoryTheory.Bicategory.whiskerLeft f η)) (self.mapComp f g') = CategoryTheory.CategoryStruct.comp (self.mapComp f g) (CategoryTheory.Bicategory.whiskerLeft (self.map f) (self.map₂ η))
    @[simp]
    theorem CategoryTheory.OplaxFunctor.mapComp_naturality_left_assoc {B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.OplaxFunctor B C) {a : B} {b : B} {c : B} {f : a b} {f' : a b} (η : f f') (g : b c) {Z : self.obj a self.obj c} (h : CategoryTheory.CategoryStruct.comp (self.map f') (self.map g) Z) :
    @[simp]
    theorem CategoryTheory.OplaxFunctor.map₂_associator_assoc {B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.OplaxFunctor B C) {a : B} {b : B} {c : B} {d : B} (f : a b) (g : b c) (h : c d) {Z : self.obj a self.obj d} (h : CategoryTheory.CategoryStruct.comp (self.map f) (CategoryTheory.CategoryStruct.comp (self.map g) (self.map h✝)) Z) :
    @[simp]
    theorem CategoryTheory.OplaxFunctor.mapComp_naturality_right_assoc {B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.OplaxFunctor B C) {a : B} {b : B} {c : B} (f : a b) {g : b c} {g' : b c} (η : g g') {Z : self.obj a self.obj c} (h : CategoryTheory.CategoryStruct.comp (self.map f) (self.map g') Z) :

    The identity oplax functor.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations

      Composition of oplax functors.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        A structure on an oplax functor that promotes an oplax functor to a pseudofunctor. See Pseudofunctor.mkOfOplax.

        Instances For
          @[simp]
          theorem CategoryTheory.OplaxFunctor.PseudoCore.mapIdIso_hom {B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.OplaxFunctor B C} (self : F.PseudoCore) {a : B} :
          (self.mapIdIso a).hom = F.mapId a
          @[simp]
          theorem CategoryTheory.OplaxFunctor.PseudoCore.mapCompIso_hom {B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.OplaxFunctor B C} (self : F.PseudoCore) {a : B} {b : B} {c : B} (f : a b) (g : b c) :
          (self.mapCompIso f g).hom = F.mapComp f g