Given categories C D E
, functors F : D ⥤ E
and G : E ⥤ D
with an adjunction
F ⊣ G
, we provide the induced adjunction between the functor categories C ⥤ D
and C ⥤ E
,
and the functor categories E ⥤ C
and D ⥤ C
.
@[simp]
theorem
CategoryTheory.Adjunction.whiskerRight_counit_app_app
(C : Type u_1)
{D : Type u_2}
{E : Type u_3}
[CategoryTheory.Category.{u_4, u_1} C]
[CategoryTheory.Category.{u_5, u_2} D]
[CategoryTheory.Category.{u_6, u_3} E]
{F : CategoryTheory.Functor D E}
{G : CategoryTheory.Functor E D}
(adj : F ⊣ G)
(X : CategoryTheory.Functor C E)
(X : C)
:
((CategoryTheory.Adjunction.whiskerRight C adj).counit.app X✝).app X = adj.counit.app (X✝.obj X)
@[simp]
theorem
CategoryTheory.Adjunction.whiskerRight_unit_app_app
(C : Type u_1)
{D : Type u_2}
{E : Type u_3}
[CategoryTheory.Category.{u_4, u_1} C]
[CategoryTheory.Category.{u_5, u_2} D]
[CategoryTheory.Category.{u_6, u_3} E]
{F : CategoryTheory.Functor D E}
{G : CategoryTheory.Functor E D}
(adj : F ⊣ G)
(X : CategoryTheory.Functor C D)
(X : C)
:
((CategoryTheory.Adjunction.whiskerRight C adj).unit.app X✝).app X = adj.unit.app (X✝.obj X)
def
CategoryTheory.Adjunction.whiskerRight
(C : Type u_1)
{D : Type u_2}
{E : Type u_3}
[CategoryTheory.Category.{u_4, u_1} C]
[CategoryTheory.Category.{u_5, u_2} D]
[CategoryTheory.Category.{u_6, u_3} E]
{F : CategoryTheory.Functor D E}
{G : CategoryTheory.Functor E D}
(adj : F ⊣ G)
:
(CategoryTheory.whiskeringRight C D E).obj F ⊣ (CategoryTheory.whiskeringRight C E D).obj G
Given an adjunction F ⊣ G
, this provides the natural adjunction
(whiskeringRight C _ _).obj F ⊣ (whiskeringRight C _ _).obj G
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Adjunction.whiskerLeft_counit_app_app
(C : Type u_1)
{D : Type u_2}
{E : Type u_3}
[CategoryTheory.Category.{u_4, u_1} C]
[CategoryTheory.Category.{u_5, u_2} D]
[CategoryTheory.Category.{u_6, u_3} E]
{F : CategoryTheory.Functor D E}
{G : CategoryTheory.Functor E D}
(adj : F ⊣ G)
(X : CategoryTheory.Functor E C)
(X : E)
:
((CategoryTheory.Adjunction.whiskerLeft C adj).counit.app X✝).app X = X✝.map (adj.counit.app X)
@[simp]
theorem
CategoryTheory.Adjunction.whiskerLeft_unit_app_app
(C : Type u_1)
{D : Type u_2}
{E : Type u_3}
[CategoryTheory.Category.{u_4, u_1} C]
[CategoryTheory.Category.{u_5, u_2} D]
[CategoryTheory.Category.{u_6, u_3} E]
{F : CategoryTheory.Functor D E}
{G : CategoryTheory.Functor E D}
(adj : F ⊣ G)
(X : CategoryTheory.Functor D C)
(X : D)
:
((CategoryTheory.Adjunction.whiskerLeft C adj).unit.app X✝).app X = X✝.map (adj.unit.app X)
def
CategoryTheory.Adjunction.whiskerLeft
(C : Type u_1)
{D : Type u_2}
{E : Type u_3}
[CategoryTheory.Category.{u_4, u_1} C]
[CategoryTheory.Category.{u_5, u_2} D]
[CategoryTheory.Category.{u_6, u_3} E]
{F : CategoryTheory.Functor D E}
{G : CategoryTheory.Functor E D}
(adj : F ⊣ G)
:
(CategoryTheory.whiskeringLeft E D C).obj G ⊣ (CategoryTheory.whiskeringLeft D E C).obj F
Given an adjunction F ⊣ G
, this provides the natural adjunction
(whiskeringLeft _ _ C).obj G ⊣ (whiskeringLeft _ _ C).obj F
.
Equations
- One or more equations did not get rendered due to their size.