Documentation

Mathlib.Analysis.InnerProductSpace.Positive

Positive operators #

In this file we define positive operators in a Hilbert space. We follow Bourbaki's choice of requiring self adjointness in the definition.

Main definitions #

Main statements #

References #

Tags #

Positive operator

def ContinuousLinearMap.IsPositive {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] (T : E →L[𝕜] E) :

A continuous linear endomorphism T of a Hilbert space is positive if it is self adjoint and ∀ x, 0 ≤ re ⟪T x, x⟫.

Equations
Instances For
    theorem ContinuousLinearMap.IsPositive.isSelfAdjoint {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {T : E →L[𝕜] E} (hT : T.IsPositive) :
    theorem ContinuousLinearMap.IsPositive.inner_nonneg_left {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {T : E →L[𝕜] E} (hT : T.IsPositive) (x : E) :
    0 RCLike.re T x, x⟫_𝕜
    theorem ContinuousLinearMap.IsPositive.inner_nonneg_right {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {T : E →L[𝕜] E} (hT : T.IsPositive) (x : E) :
    0 RCLike.re x, T x⟫_𝕜
    theorem ContinuousLinearMap.IsPositive.add {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {T : E →L[𝕜] E} {S : E →L[𝕜] E} (hT : T.IsPositive) (hS : S.IsPositive) :
    (T + S).IsPositive
    theorem ContinuousLinearMap.IsPositive.conj_adjoint {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] {T : E →L[𝕜] E} (hT : T.IsPositive) (S : E →L[𝕜] F) :
    (S.comp (T.comp (ContinuousLinearMap.adjoint S))).IsPositive
    theorem ContinuousLinearMap.IsPositive.adjoint_conj {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] {T : E →L[𝕜] E} (hT : T.IsPositive) (S : F →L[𝕜] E) :
    ((ContinuousLinearMap.adjoint S).comp (T.comp S)).IsPositive
    theorem ContinuousLinearMap.IsPositive.conj_orthogonalProjection {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] (U : Submodule 𝕜 E) {T : E →L[𝕜] E} (hT : T.IsPositive) [CompleteSpace U] :
    (U.subtypeL.comp ((orthogonalProjection U).comp (T.comp (U.subtypeL.comp (orthogonalProjection U))))).IsPositive
    theorem ContinuousLinearMap.IsPositive.orthogonalProjection_comp {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {T : E →L[𝕜] E} (hT : T.IsPositive) (U : Submodule 𝕜 E) [CompleteSpace U] :
    ((orthogonalProjection U).comp (T.comp U.subtypeL)).IsPositive
    theorem ContinuousLinearMap.isPositive_iff_complex {E' : Type u_4} [NormedAddCommGroup E'] [InnerProductSpace E'] [CompleteSpace E'] (T : E' →L[] E') :
    T.IsPositive ∀ (x : E'), (RCLike.re T x, x⟫_) = T x, x⟫_ 0 RCLike.re T x, x⟫_

    The (Loewner) partial order on continuous linear maps on a Hilbert space determined by f ≤ g if and only if g - f is a positive linear map (in the sense of ContinuousLinearMap.IsPositive). With this partial order, the continuous linear maps form a StarOrderedRing.

    Equations
    theorem ContinuousLinearMap.le_def {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] (f : E →L[𝕜] E) (g : E →L[𝕜] E) :
    f g (g - f).IsPositive
    theorem ContinuousLinearMap.nonneg_iff_isPositive {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] (f : E →L[𝕜] E) :
    0 f f.IsPositive