Documentation

Mathlib.Analysis.Fourier.ZMod

Fourier theory on ZMod N #

Basic definitions and properties of the discrete Fourier transform for functions on ZMod N.

Main definitions and results #

noncomputable def ZMod.dft {N : } [NeZero N] (Φ : ZMod N) (k : ZMod N) :

The discrete Fourier transform on ℤ / N ℤ (with the counting measure)

Equations
Instances For

    The discrete Fourier transform on ℤ / N ℤ (with the counting measure)

    Equations
    Instances For
      theorem ZMod.dft_apply {N : } [NeZero N] (Φ : ZMod N) (k : ZMod N) :
      ZMod.dft Φ k = j : ZMod N, ZMod.toCircle (-(j * k)) Φ j
      theorem ZMod.dft_def {N : } [NeZero N] (Φ : ZMod N) :
      ZMod.dft Φ = fun (k : ZMod N) => j : ZMod N, ZMod.toCircle (-(j * k)) Φ j
      theorem DirichletCharacter.fourierTransform_eq_gaussSum_mulShift {N : } [NeZero N] (χ : DirichletCharacter N) (k : ZMod N) :
      ZMod.dft (χ) k = gaussSum χ (ZMod.stdAddChar.mulShift (-k))
      theorem DirichletCharacter.fourierTransform_eq_inv_mul_gaussSum {N : } [NeZero N] (χ : DirichletCharacter N) (k : ZMod N) (hχ : χ.IsPrimitive) :
      ZMod.dft (χ) k = χ⁻¹ (-k) * gaussSum χ ZMod.stdAddChar

      For a primitive Dirichlet character χ, the Fourier transform of χ is a constant multiple of χ⁻¹ (and the constant is essentially the Gauss sum).