Fourier theory on ZMod N
#
Basic definitions and properties of the discrete Fourier transform for functions on ZMod N
.
Main definitions and results #
ZMod.dft
: the Fourier transform with respect to the standard additive characterZMod.stdAddChar
(mappingj mod N
toexp (2 * π * I * j / N)
). The notation𝓕
, scoped in namespaceZMod
, is available for this.DirichletCharacter.fourierTransform_eq_inv_mul_gaussSum
: the discrete Fourier transform of a primitive Dirichlet characterχ
is a Gauss sum timesχ⁻¹
.
The discrete Fourier transform on ℤ / N ℤ
(with the counting measure)
Equations
- ZMod.term𝓕 = Lean.ParserDescr.node `ZMod.term𝓕 1024 (Lean.ParserDescr.symbol "𝓕")
Instances For
theorem
DirichletCharacter.fourierTransform_eq_inv_mul_gaussSum
{N : ℕ}
[NeZero N]
(χ : DirichletCharacter ℂ N)
(k : ZMod N)
(hχ : χ.IsPrimitive)
:
For a primitive Dirichlet character χ
, the Fourier transform of χ
is a constant multiple
of χ⁻¹
(and the constant is essentially the Gauss sum).