Facts about star-ordered rings that depend on the continuous functional calculus #
This file contains various basic facts about star-ordered rings (i.e. mainly C⋆-algebras) that depend on the continuous functional calculus.
We also put an order instance on Unitization ℂ A
when A
is a C⋆-algebra via
the spectral order.
Main theorems #
IsSelfAdjoint.le_algebraMap_norm_self
andIsSelfAdjoint.le_algebraMap_norm_self
, which respectively show thata ≤ algebraMap ℝ A ‖a‖
and-(algebraMap ℝ A ‖a‖) ≤ a
in a C⋆-algebra.mul_star_le_algebraMap_norm_sq
andstar_mul_le_algebraMap_norm_sq
, which give similar statements fora * star a
andstar a * a
.CstarRing.norm_le_norm_of_nonneg_of_le
: in a non-unital C⋆-algebra, if0 ≤ a ≤ b
, then‖a‖ ≤ ‖b‖
.CstarRing.conjugate_le_norm_smul
: in a non-unital C⋆-algebra, we have thatstar a * b * a ≤ ‖b‖ • (star a * a)
(and a primed version for thea * b * star a
case).
Tags #
continuous functional calculus, normal, selfadjoint
instance
Unitization.instPartialOrder
{A : Type u_1}
[NonUnitalNormedRing A]
[CompleteSpace A]
[StarRing A]
[CstarRing A]
[NormedSpace ℂ A]
[StarModule ℂ A]
[SMulCommClass ℂ A A]
[IsScalarTower ℂ A A]
:
PartialOrder (Unitization ℂ A)
Equations
- Unitization.instPartialOrder = CstarRing.spectralOrder (Unitization ℂ A)
instance
Unitization.instStarOrderedRing
{A : Type u_1}
[NonUnitalNormedRing A]
[CompleteSpace A]
[StarRing A]
[CstarRing A]
[NormedSpace ℂ A]
[StarModule ℂ A]
[SMulCommClass ℂ A A]
[IsScalarTower ℂ A A]
:
Equations
- ⋯ = ⋯
theorem
Unitization.inr_le_iff
{A : Type u_1}
[NonUnitalNormedRing A]
[CompleteSpace A]
[PartialOrder A]
[StarRing A]
[StarOrderedRing A]
[CstarRing A]
[NormedSpace ℂ A]
[StarModule ℂ A]
[SMulCommClass ℂ A A]
[IsScalarTower ℂ A A]
(a : A)
(b : A)
(ha : autoParam (IsSelfAdjoint a) _auto✝)
(hb : autoParam (IsSelfAdjoint b) _auto✝)
:
@[simp]
theorem
Unitization.inr_nonneg_iff
{A : Type u_1}
[NonUnitalNormedRing A]
[CompleteSpace A]
[PartialOrder A]
[StarRing A]
[StarOrderedRing A]
[CstarRing A]
[NormedSpace ℂ A]
[StarModule ℂ A]
[SMulCommClass ℂ A A]
[IsScalarTower ℂ A A]
{a : A}
:
theorem
IsSelfAdjoint.le_algebraMap_norm_self
{A : Type u_1}
[NormedRing A]
[StarRing A]
[CstarRing A]
[CompleteSpace A]
[NormedAlgebra ℂ A]
[StarModule ℂ A]
[PartialOrder A]
[StarOrderedRing A]
{a : A}
(ha : autoParam (IsSelfAdjoint a) _auto✝)
:
a ≤ (algebraMap ℝ A) ‖a‖
theorem
IsSelfAdjoint.neg_algebraMap_norm_le_self
{A : Type u_1}
[NormedRing A]
[StarRing A]
[CstarRing A]
[CompleteSpace A]
[NormedAlgebra ℂ A]
[StarModule ℂ A]
[PartialOrder A]
[StarOrderedRing A]
{a : A}
(ha : autoParam (IsSelfAdjoint a) _auto✝)
:
theorem
CstarRing.mul_star_le_algebraMap_norm_sq
{A : Type u_1}
[NormedRing A]
[StarRing A]
[CstarRing A]
[CompleteSpace A]
[NormedAlgebra ℂ A]
[StarModule ℂ A]
[PartialOrder A]
[StarOrderedRing A]
{a : A}
:
theorem
CstarRing.star_mul_le_algebraMap_norm_sq
{A : Type u_1}
[NormedRing A]
[StarRing A]
[CstarRing A]
[CompleteSpace A]
[NormedAlgebra ℂ A]
[StarModule ℂ A]
[PartialOrder A]
[StarOrderedRing A]
{a : A}
:
theorem
IsSelfAdjoint.toReal_spectralRadius_eq_norm
{A : Type u_1}
[NormedRing A]
[StarRing A]
[CstarRing A]
[CompleteSpace A]
[NormedAlgebra ℂ A]
[StarModule ℂ A]
{a : A}
(ha : IsSelfAdjoint a)
:
(spectralRadius ℝ a).toReal = ‖a‖
theorem
CstarRing.norm_or_neg_norm_mem_spectrum
{A : Type u_1}
[NormedRing A]
[StarRing A]
[CstarRing A]
[CompleteSpace A]
[NormedAlgebra ℂ A]
[StarModule ℂ A]
[Nontrivial A]
{a : A}
(ha : autoParam (IsSelfAdjoint a) _auto✝)
:
theorem
CstarRing.nnnorm_mem_spectrum_of_nonneg
{A : Type u_1}
[NormedRing A]
[StarRing A]
[CstarRing A]
[CompleteSpace A]
[NormedAlgebra ℂ A]
[StarModule ℂ A]
[PartialOrder A]
[StarOrderedRing A]
[Nontrivial A]
{a : A}
(ha : autoParam (0 ≤ a) _auto✝)
:
theorem
CstarRing.norm_mem_spectrum_of_nonneg
{A : Type u_1}
[NormedRing A]
[StarRing A]
[CstarRing A]
[CompleteSpace A]
[NormedAlgebra ℂ A]
[StarModule ℂ A]
[PartialOrder A]
[StarOrderedRing A]
[Nontrivial A]
{a : A}
(ha : autoParam (0 ≤ a) _auto✝)
:
instance
CstarRing.instNonnegSpectrumClassComplexNonUnital
{A : Type u_1}
[NonUnitalNormedRing A]
[CompleteSpace A]
[PartialOrder A]
[StarRing A]
[StarOrderedRing A]
[CstarRing A]
[NormedSpace ℂ A]
[StarModule ℂ A]
[SMulCommClass ℂ A A]
[IsScalarTower ℂ A A]
:
Equations
- ⋯ = ⋯
theorem
CstarRing.norm_le_norm_of_nonneg_of_le
{A : Type u_1}
[NonUnitalNormedRing A]
[CompleteSpace A]
[PartialOrder A]
[StarRing A]
[StarOrderedRing A]
[CstarRing A]
[NormedSpace ℂ A]
[StarModule ℂ A]
[SMulCommClass ℂ A A]
[IsScalarTower ℂ A A]
{a : A}
{b : A}
(ha : autoParam (0 ≤ a) _auto✝)
(hab : a ≤ b)
:
theorem
CstarRing.conjugate_le_norm_smul
{A : Type u_1}
[NonUnitalNormedRing A]
[CompleteSpace A]
[PartialOrder A]
[StarRing A]
[StarOrderedRing A]
[CstarRing A]
[NormedSpace ℂ A]
[StarModule ℂ A]
[SMulCommClass ℂ A A]
[IsScalarTower ℂ A A]
{a : A}
{b : A}
(hb : autoParam (IsSelfAdjoint b) _auto✝)
:
theorem
CstarRing.conjugate_le_norm_smul'
{A : Type u_1}
[NonUnitalNormedRing A]
[CompleteSpace A]
[PartialOrder A]
[StarRing A]
[StarOrderedRing A]
[CstarRing A]
[NormedSpace ℂ A]
[StarModule ℂ A]
[SMulCommClass ℂ A A]
[IsScalarTower ℂ A A]
{a : A}
{b : A}
(hb : autoParam (IsSelfAdjoint b) _auto✝)
: