The nerve of a category #
This file provides the definition of the nerve of a category C
,
which is a simplicial set nerve C
(see [goerss-jardine-2009], Example I.1.4).
By definition, the type of n
-simplices of nerve C
is ComposableArrows C n
,
which is the category Fin (n + 1) ⥤ C
.
References #
- [Paul G. Goerss, John F. Jardine, Simplicial Homotopy Theory][goerss-jardine-2009]
@[simp]
theorem
CategoryTheory.nerve_obj
(C : Type u)
[CategoryTheory.Category.{v, u} C]
(Δ : SimplexCategoryᵒᵖ)
:
(CategoryTheory.nerve C).obj Δ = CategoryTheory.ComposableArrows C (Opposite.unop Δ).len
@[simp]
theorem
CategoryTheory.nerve_map
(C : Type u)
[CategoryTheory.Category.{v, u} C]
:
∀ {X Y : SimplexCategoryᵒᵖ} (f : X ⟶ Y) (x : CategoryTheory.ComposableArrows C (Opposite.unop X).len),
(CategoryTheory.nerve C).map f x = x.whiskerLeft (SimplexCategory.toCat.map f.unop)
The nerve of a category
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
CategoryTheory.instCategoryObjOppositeSimplexCategoryNerve
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
{Δ : SimplexCategoryᵒᵖ}
:
Equations
- CategoryTheory.instCategoryObjOppositeSimplexCategoryNerve = inferInstance
@[simp]
@[simp]
theorem
CategoryTheory.nerveFunctor_map_app :
∀ {X Y : CategoryTheory.Cat} (F : X ⟶ Y) (Δ : SimplexCategoryᵒᵖ)
(a : CategoryTheory.ComposableArrows (↑X) (Opposite.unop Δ).len),
(CategoryTheory.nerveFunctor.map F).app Δ a = (CategoryTheory.Functor.mapComposableArrows F (Opposite.unop Δ).len).obj a
The nerve of a category, as a functor Cat ⥤ SSet
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.Nerve.δ₀_eq
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
{n : ℕ}
{x : (CategoryTheory.nerve C).obj (Opposite.op (SimplexCategory.mk (n + 1)))}
: