Lemmas regarding the prime spectrum of tensor products #
Main result #
PrimeSpectrum.embedding_tensorProductTo_of_surjectiveOnStalks
: IfR →+* T
is surjective on stalks (see Mathlib/RingTheory/SurjectiveOnStalks.lean), thenSpec(S ⊗[R] T) → Spec S × Spec T
is a topological embedding (whereSpec S × Spec T
is the cartesian product with the product topology).
noncomputable def
PrimeSpectrum.tensorProductTo
(R : Type u_1)
(S : Type u_2)
(T : Type u_3)
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing T]
[Algebra R T]
(x : PrimeSpectrum (TensorProduct R S T))
:
The canonical map from Spec(S ⊗[R] T)
to the cartesian product Spec S × Spec T
.
Equations
- PrimeSpectrum.tensorProductTo R S T x = ((PrimeSpectrum.comap (algebraMap S (TensorProduct R S T))) x, (PrimeSpectrum.comap Algebra.TensorProduct.includeRight.toRingHom) x)
Instances For
theorem
PrimeSpectrum.embedding_tensorProductTo_of_surjectiveOnStalks_aux
(R : Type u_1)
(S : Type u_2)
(T : Type u_3)
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing T]
[Algebra R T]
(hRT : (algebraMap R T).SurjectiveOnStalks)
(p₁ : PrimeSpectrum (TensorProduct R S T))
(p₂ : PrimeSpectrum (TensorProduct R S T))
(h : PrimeSpectrum.tensorProductTo R S T p₁ = PrimeSpectrum.tensorProductTo R S T p₂)
:
p₁ ≤ p₂
theorem
PrimeSpectrum.embedding_tensorProductTo_of_surjectiveOnStalks
(R : Type u_1)
(S : Type u_2)
(T : Type u_3)
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing T]
[Algebra R T]
(hRT : (algebraMap R T).SurjectiveOnStalks)
: