Properties on the underlying functions of morphisms of schemes. #
This file includes various results on properties of morphisms of schemes that come from properties of the underlying map of topological spaces, including
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyInjective :
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] =>
Function.Injective).RespectsIso
instance
AlgebraicGeometry.injective_isLocalAtTarget :
AlgebraicGeometry.IsLocalAtTarget
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Function.Injective)
Equations
theorem
AlgebraicGeometry.surjective_iff
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
:
AlgebraicGeometry.Surjective f ↔ Function.Surjective ⇑f.val.base
class
AlgebraicGeometry.Surjective
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
:
A morphism of schemes is surjective if the underlying map is.
- surj : Function.Surjective ⇑f.val.base
Instances
theorem
AlgebraicGeometry.Surjective.surj
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
{f : X ⟶ Y}
[self : AlgebraicGeometry.Surjective f]
:
Function.Surjective ⇑f.val.base
theorem
AlgebraicGeometry.surjective_eq_topologically :
@AlgebraicGeometry.Surjective = AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Function.Surjective
theorem
AlgebraicGeometry.Scheme.Hom.surjective
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X.Hom Y)
[AlgebraicGeometry.Surjective f]
:
Function.Surjective ⇑f.val.base
@[instance 100]
instance
AlgebraicGeometry.instSurjectiveOfIsIsoScheme
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
[CategoryTheory.IsIso f]
:
Equations
- ⋯ = ⋯
instance
AlgebraicGeometry.instSurjectiveCompScheme
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
{Z : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[AlgebraicGeometry.Surjective f]
[AlgebraicGeometry.Surjective g]
:
Equations
- ⋯ = ⋯
theorem
AlgebraicGeometry.Surjective.of_comp
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
{Z : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[AlgebraicGeometry.Surjective (CategoryTheory.CategoryStruct.comp f g)]
:
theorem
AlgebraicGeometry.Surjective.comp_iff
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
{Z : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[AlgebraicGeometry.Surjective f]
:
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsOpenMap :
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] =>
IsOpenMap).RespectsIso
instance
AlgebraicGeometry.isOpenMap_isLocalAtTarget :
AlgebraicGeometry.IsLocalAtTarget
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => IsOpenMap)
Equations
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsClosedMap :
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] =>
IsClosedMap).RespectsIso
instance
AlgebraicGeometry.isClosedMap_isLocalAtTarget :
AlgebraicGeometry.IsLocalAtTarget
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => IsClosedMap)
Equations
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyEmbedding :
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] =>
Embedding).RespectsIso
instance
AlgebraicGeometry.embedding_isLocalAtTarget :
AlgebraicGeometry.IsLocalAtTarget
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Embedding)
Equations
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyOpenEmbedding :
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] =>
OpenEmbedding).RespectsIso
instance
AlgebraicGeometry.openEmbedding_isLocalAtTarget :
AlgebraicGeometry.IsLocalAtTarget
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => OpenEmbedding)
Equations
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyClosedEmbedding :
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] =>
ClosedEmbedding).RespectsIso
instance
AlgebraicGeometry.closedEmbedding_isLocalAtTarget :
AlgebraicGeometry.IsLocalAtTarget
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => ClosedEmbedding)