Minimal Axioms for a Ring #
This file defines constructors to define a Ring
or CommRing
structure on a Type, while proving
a minimum number of equalities.
Main Definitions #
Ring.ofMinimalAxioms
: Define aRing
structure on a Type by proving a minimized set of axiomsCommRing.ofMinimalAxioms
: Define aCommRing
structure on a Type by proving a minimized set of axioms
@[reducible, inline]
abbrev
Ring.ofMinimalAxioms
{R : Type u}
[Add R]
[Mul R]
[Neg R]
[Zero R]
[One R]
(add_assoc : ∀ (a b c : R), a + b + c = a + (b + c))
(zero_add : ∀ (a : R), 0 + a = a)
(add_left_neg : ∀ (a : R), -a + a = 0)
(mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c))
(one_mul : ∀ (a : R), 1 * a = a)
(mul_one : ∀ (a : R), a * 1 = a)
(left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c)
(right_distrib : ∀ (a b c : R), (a + b) * c = a * c + b * c)
:
Ring R
Define a Ring
structure on a Type by proving a minimized set of axioms.
Note that this uses the default definitions for npow
, nsmul
, zsmul
and sub
See note [reducible non-instances].
Equations
- Ring.ofMinimalAxioms add_assoc zero_add add_left_neg mul_assoc one_mul mul_one left_distrib right_distrib = Ring.mk ⋯ (fun (x : ℤ) (x_1 : R) => x • x_1) ⋯ ⋯ ⋯ add_left_neg ⋯ ⋯
Instances For
@[reducible, inline]
abbrev
CommRing.ofMinimalAxioms
{R : Type u}
[Add R]
[Mul R]
[Neg R]
[Zero R]
[One R]
(add_assoc : ∀ (a b c : R), a + b + c = a + (b + c))
(zero_add : ∀ (a : R), 0 + a = a)
(add_left_neg : ∀ (a : R), -a + a = 0)
(mul_assoc : ∀ (a b c : R), a * b * c = a * (b * c))
(mul_comm : ∀ (a b : R), a * b = b * a)
(one_mul : ∀ (a : R), 1 * a = a)
(left_distrib : ∀ (a b c : R), a * (b + c) = a * b + a * c)
:
CommRing R
Define a CommRing
structure on a Type by proving a minimized set of axioms.
Note that this uses the default definitions for npow
, nsmul
, zsmul
and sub
See note [reducible non-instances].
Equations
- CommRing.ofMinimalAxioms add_assoc zero_add add_left_neg mul_assoc mul_comm one_mul left_distrib = CommRing.mk mul_comm